Academic Guide Book for Bachelor Degree Programmes

Academic Session 2011-2012

Universiti Malaysia Perlis
Knowledge Sincerity Excellence
Academic Guide Book
Bachelor Degree Programmes
ACADEMIC SESSION 2011-2012

Prepared by:
Deputy Vice-Chancellor’s
(Academic & International) Office

Advisors:
Y. BHG. BRIG. JEN. DATO’ PROF. DR. KAMARUDIN HUSSIN
PROF. DR. ZUL AZHAR ZAHID JAMAL

Head of Writer & Project Coordinator:
PROF. IR. DR. REZUWAN KAMARUDDIN
BAHARUDDIN ISMAIL

Author Members:
Norshah Afizi Shuaib
Mohd Arif Anuar Mohd Saleh
Dr. Dewi Suriyani Che Halin
Dr. Firuz Zainuddin
Huzairy Hassan
Hirun Azaman Ismail
Dr. Tengku Nuraiti Tengku Izhar
Norlia Mohd Ibrahim
Nor’izah Ahmad
Lt. Abdul Jalil Ramli
Shafiq Hizwari Md. Hashim
Azlita Abdul Jalil
Tengku Suriani Tengku Yaakob
Vithyacharan A/L Retnasamy
Mohamad Nuzaihan Md. Nor
Sharulnizam Mohd Mukhtar
Ahmad Kadri Junoh
Ahmad Hifzurrahman Ridzuan
Mohd Azrizal Mohd Saleh
Wan Norhaizar Harun
Dr. Mukhzeer Mohamad Shahim
Dr. Shahrul Nizam Yaacob
Dr. Wan Khairunizam Wan Ahmad
Ym. Tunku Muhammad Nizar Tunku Mansur
Azmi Harun
Prof. Madya Dr. Abdullah Chik
Zulfakar Mokhtar
Dr. Nasrul Hamidin
Sharmini Abdullah
Ahmad Zulhusny Rozali
Syed Zulkarnain Syed Idrus
Mohd Syafarudy Abu
Mohamad Ezral Baharudin
Mohd. Asyraf Che Doi

Secretary:
Syarizal Ishar

Acknowledgements:
Y. Bhg. Brig. Jen. Dato’ Prof. Dr. Kamarudin
Hussin, Prof. Dr. Zul Azhar Zahid Jamal,
Prof. Dr. Ismail Daut, Encik Zuber Mohamed,
Puan Mazmin Mat Akhir, Puan Saodah Hassan

and

Dean of Engineering Schools, Dean of School
of Business Innovation & Technopreneurship
(PPIPT), Dean of Centre for Communication
Technology and Human Development (PTKPI);
Dean of Engineering Centre, Dean of Institute
of Engineering Mathematics (IMK), Dean of
Centre of International Affairs (PHEA), Director
of Centre for Industrial Collaboration (CIC),
Director of Diploma Programme Unit,
Director of Co-curriculum Centre

and

All the staff at Academic Management Division,
Deputy Vice-Chancellor
(Academic & International)
Office, Universiti Malaysia Perlis.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Mission, Vision and UniMAP Anthem</td>
<td>6</td>
</tr>
<tr>
<td>UniMAP’s Chancellor</td>
<td>7</td>
</tr>
<tr>
<td>UniMAP’s Pro Chancellor</td>
<td>8</td>
</tr>
<tr>
<td>Vice Chancellor’s Message</td>
<td>9</td>
</tr>
<tr>
<td>Exco Committee (Principal Officers)</td>
<td>10</td>
</tr>
<tr>
<td>UniMAP at a Glance</td>
<td>11</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>12</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>13</td>
</tr>
<tr>
<td>Academic System</td>
<td>42</td>
</tr>
<tr>
<td>Academic Support Centres</td>
<td>51</td>
</tr>
<tr>
<td>Academic Management Division, Department of Registry</td>
<td>52</td>
</tr>
<tr>
<td>School of Microelectronic Engineering</td>
<td>55</td>
</tr>
<tr>
<td>School of Computer & Communication Engineering</td>
<td>91</td>
</tr>
<tr>
<td>School of Mechatronic Engineering</td>
<td>121</td>
</tr>
<tr>
<td>School of Electrical Systems Engineering</td>
<td>175</td>
</tr>
<tr>
<td>School of Manufacturing Engineering</td>
<td>205</td>
</tr>
<tr>
<td>School of Materials Engineering</td>
<td>235</td>
</tr>
<tr>
<td>School of Bioprocess Engineering</td>
<td>271</td>
</tr>
<tr>
<td>School of Environmental Engineering</td>
<td>325</td>
</tr>
<tr>
<td>School of Business Innovation and Techno Entrepreneur (PPIPT)</td>
<td>361</td>
</tr>
<tr>
<td>Centre for Communication Technology and Human Development (PTKPI)</td>
<td>377</td>
</tr>
<tr>
<td>Engineering Centre (PK)</td>
<td>393</td>
</tr>
<tr>
<td>Institute of Engineering Mathematics (IMK)</td>
<td>401</td>
</tr>
<tr>
<td>Centre for Industrial Collaboration (CIC)</td>
<td>413</td>
</tr>
<tr>
<td>Co-Curriculum Centre</td>
<td>419</td>
</tr>
</tbody>
</table>

From time to time, the university may do some changes on certain aspects of curriculum and academic system in order to fulfil the current needs and requirements. If there are any changes, all students will be informed. All students are subject to the change.
Introduction

The Guidebook for Bachelor Degree Programme (Academic Session 2011/2012) is prepared to assist UniMAP new students in understanding the process and procedure that are related to their study in UniMAP. Students should utilize this book as their major guidance in planning and deciding on courses to be taken from their first until final year of their studies. This guidebook also gives some basic information on the study plan structures, academic systems, list of courses offered together with the synopsis, source of references, list of staff and other related information. It is hoped that students will benefit from the information given in this guidebook and use the information to plan their studies in UniMAP.

Currently, UniMAP has 9 schools that offer 24 Degree Programmes and 6 Diploma Programmes. Below are the list of schools and Degree Programmes offered at UniMAP:

List of Schools at UniMAP:

1. School of Microelectronic Engineering
2. School of Computer & Communication Engineering
3. School of Mechatronic Engineering
4. School of Electrical Systems Engineering
5. School of Manufacturing Engineering
6. School of Material Engineering
7. School of Bioprocess Engineering
8. School of Environmental Engineering
9. Centre of Business Innovation and Techno Entrepreneur (PPIPT)
List of Academic Programmes (Degree)

1. Bachelor of Engineering (Microelectronic Engineering)
2. Bachelor of Engineering (Electronic Engineering)
3. Bachelor of Engineering (Computer Engineering)
4. Bachelor of Engineering (Communication Engineering)
5. Bachelor of Engineering (Mechatronic Engineering)
6. Bachelor of Engineering (Mechanical Engineering)
7. Bachelor of Engineering (Electrical System Engineering)
8. Bachelor of Engineering (Industrial Electronic Engineering)
9. Bachelor of Engineering (Manufacturing Engineering)
10. Bachelor of Engineering (Product Design Engineering)

11. Bachelor of Engineering (Material Engineering)
12. Bachelor of Engineering (Metallurgy Engineering)
13. Bachelor of Engineering (Biomedical Electronic Engineering)
14. Bachelor of Engineering (Bioprocess Engineering)
15. Bachelor of Engineering (Environmental Engineering)
16. Bachelor of Engineering (Polymer Engineering)
17. Bachelor of Engineering (Photonic Engineering)
18. Bachelor of Engineering (Bio System Engineering)
19. Bachelor of Engineering (Building Engineering)
20. Bachelor of Engineering (Computer Network Engineering)
21. Bachelor of Engineering (Electrical Power System)
22. Bachelor of Business (Entrepreneurial Engineering)
23. Bachelor of Business (International Business)
24. Bachelor of Chemical Engineering Technology (Biotechnology Industry)
Mission
To produce a holistic human capital that contributes to the nation’s development and industrial competitiveness agenda

Vision
An internationally competitive academic and research institution

UniMAP ANTHEM
WAWASANKU

Universiti Malaysia Perlis
Alam Kejuruteraan
Ilmu Keikhlasan Kecemerlangan
Wawasan Jiwa Kita

Berdikari Rohaniah
Berteknologi
Pemimpin Berbestari
Untuk Bangsa Insan Dan Umat dunia
Negara Yang Tercinta

Universiti Malaysia Perlis
Alam Kejuruteraan
Ilmu Keikhlasan Kecemerlangan
Wawasan Jiwa Kita
UniMAP’S CHANCELLOR

D.Y.T.M. TUANKU SYED FAIZUDDIN PUTRA IBNI TUANKU SYED SIRAJUDDIN PUTRA JAMALULLAIL D.K., S.P.M.P.

CROWN PRINCE OF PERLIS
CHANCELLOR OF UNIVERSITI MALAYSIA PERLIS
UniMAP’S PRO CHANCELLOR
D.Y.T.M TUANKU HAJAH LAILATUL SHAHREEN AKASHAH KHALIL

PRO CHANCELLOR OF UNIVERSITI MALAYSIA PERLIS
Bismillah Hirrahman Nirrahim

Assalamualaikum Warahmatullahi Taala Wabarakatuh and a very warm welcome.

First of all I would like to congratulate all of you for being selected to enroll at Universiti Malaysia Perlis. As the Vice-Chancellor of this university I am very pleased to welcome the new intake of students into the family of UniMAP. This university places a great emphasis in inculcating the culture of knowledge, sincerity and excellence. These are the values that we would like to pass on to our dear students and we are committed to this cause.

As part of ensuring a conducive learning environment and quality in education, we try to cater to every needs of the students. In fact we have gone the extra miles to provide the best using the resources available to us and you can witness swift progress we have made within the span of only nine years of existence. In addition, the university’s staff is made up of a wonderful mix of the young and enthusiastic with the more experienced ones, both fuelled with dedication and passion to education.

Regardless of the circumstances and challenges of being a distributed campus, we are proud to see the graduates of this university are well accepted in the industry even some have become successful in their ventures and enterprise. One of the reasons for this success is due to the integration of Soft Skills in teaching and learning and students development activities which include co-curricular programs that are based on the foundation of the 7i-Pillars. Every students of UniMAP are required to complete the seven activities that have been planned in order for them to graduate.

The significance of students’ involvement in co-curricular activities and university programs lies in the believe that it will enhance generic skills among the students. This in turn will complete the cycle of education which involves intellectual domain in the build up to the physical, social and emotional development. Aside from that, other elements such as discipline, entrepreneurship, creativity, innovation and appreciation for mother nature are hoped to be sowed into the students through involvements in these activities. As a result, graduates of UniMAP are not only capable academically but also equipped with various value added skills and knowledge.

My dear students, I strongly hope all of you would embrace UniMAP as your home for the next few years and immerse yourself in its educational values. Once again, welcome to UniMAP and ‘Carpe Diem!’
UniMAP EXCO COMMITTEE (PRINCIPAL OFFICERS)

Brig. Jen. Dato’ Prof. Dr. Kamarudin Hussin
(Vice Chancellor)

Prof. Dr. Zul Azhar Zahid Jamal
Deputy Vice Chancellor (Academic & International)

Prof. Dr. Ismail Daut
Deputy Vice Chancellor (Research & Innovation)

Mrs Saodah Hassan
Bursar

Registrar

Chief Librarian

NOT YET APPOINTED
This change of name was done due to a number of reasons, the main one being that there is a need to promote a brand new image in terms of academic and research excellence since the University has shown enormous potential in the last five years or so of its establishment. UniMAP has roughly 5715 students and a workforce of approximately 1,723 people comprising academic and non-academic staff. There are 24 Degree programmes, 6 Diploma programmes and 24 Postgraduate programmes leading to the MSc and PhD, all offered through 9 schools.

UniMAP aims to produce highly-skilled engineers who are capable of planning, designing, building, testing, and maintaining devices, systems, and processes, as well as being capable of solving engineering problems in an innovative and creative manner. These qualities, among others, are in line with the characteristics of the ‘Global Engineer’, as implied in the various engineering education curricular that conform to the internationally accepted Washington Accord. Graduates of UniMAP are expected to not only exhibit excellence in knowledge and skills directly related to their academic fields of study, but are also expected to be proficient in communication and ICT skills, as well as possessing unsurpassed traits of professionalism and patriotism. In addition, they should also be confident enough to explore entrepreneurial possibilities.

Looking at the importance of Engineering Technology, University Malaysia Perlis (UniMAP) taking proactive steps by introducing Engineering Technology which aims to educate and train highly skilled manpower to contribute to achieve high income advanced industrial countries (world class industrial nation). It is also expected to offset the vacancies required by the industry for a professional team called the Engineering Technologists.

The Bachelor of Chemical Engineering Technology (Hons.) (Biotechnology Industry) is a program under the School of Bioprocess Engineering. This programme is the first Engineering Technology offered at UniMAP this academic session.
ACADEMIC CALENDAR 2011/2012 SESSION
(DEGREE PROGRAMME)

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>(12 September 2011 – 22 January 2012) - 19 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration New Intake</td>
<td>4 September 2011</td>
</tr>
<tr>
<td>Orientation</td>
<td>5 September 2011</td>
</tr>
<tr>
<td>Lecture</td>
<td>12 September 2011</td>
</tr>
<tr>
<td>Mid Semester Break</td>
<td>5 November 2011</td>
</tr>
<tr>
<td>Lecture</td>
<td>14 November 2011</td>
</tr>
<tr>
<td>Revision Week</td>
<td>24 December 2011</td>
</tr>
<tr>
<td>Examination Week</td>
<td>2 January 2012</td>
</tr>
<tr>
<td>Semester Break</td>
<td>23 January 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th>(20 February 2012 – 22 Jun 2012) - 18 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>20 February 2012</td>
</tr>
<tr>
<td>Mid Semester Break</td>
<td>7 April 2012</td>
</tr>
<tr>
<td>Lecture</td>
<td>16 April 2012</td>
</tr>
<tr>
<td>Revision Week</td>
<td>2 Jun 2012</td>
</tr>
<tr>
<td>Examination</td>
<td>11 Jun 2012</td>
</tr>
<tr>
<td>Semester Break</td>
<td>23 Jun 2012</td>
</tr>
</tbody>
</table>

Update: April, 2011
Source: Senate Unit
ADMISSION REQUIREMENTS

ADMISSION REQUIREMENTS FOR UNDERGRADUATE DEGREE PROGRAM
ACADEMIC SESSION OF 2011/2012

MATRICULATION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University General Requirement</td>
<td>Passed the Malaysian Certificate of Education/Sijil Pelajaran Malaysia (SPM)/equivalent with credit in Bahasa Melayu / Bahasa Malaysia or credit in Bahasa Melayu / Bahasa Malaysia July paper; and Passed KPM Matriculation/UM Foundation Studies in Science/UiTM Foundation Studies with minimum CGPA 2.00; and Passed with at least Band 1 in Malaysian University English Test (MUET).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Kejuruteraan Mikroelektronik (Microelectronics Engineering)</td>
<td>RK05 (8 Semesters)</td>
<td>Passed the University General Requirement and Programme Requirement</td>
<td>Passed with minimum C Grade (2.00) in Matriculation/Foundation Studies from any of these subjects:- • Physics / Engineering Physics / Chemistry / Engineering Chemistry; and • Mathematics / Engineering Mathematics</td>
</tr>
<tr>
<td>2.</td>
<td>Kejuruteraan Mekanikal (Mechanical Engineering)</td>
<td>RK08 (8 Semesters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kejuruteraan Pembuatan (Manufacturing Engineering)</td>
<td>RK13 (8 Semesters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Kejuruteraan Komputer (Computer Engineering)</td>
<td>RK20 (8 Semesters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Kejuruteraan Sistem Elektrik (Electrical System Engineering)</td>
<td>RK23 (8 Semesters)</td>
<td>(This is also to be offered to the Technical Sciences Matriculation students).</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Kejuruteraan Mekatronik (Mechatronics Engineering) RK24 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Kejuruteraan Elektronik Industri (Industrial Electronics Engineering) RK45 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Kejuruteraan Perhubungan (Communication Engineering) RK53 (8 Semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Kejuruteraan Metalurgi (Metallurgical Engineering) RK56 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Kejuruteraan Bangunan (Building Engineering) RK82 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Kejuruteraan Rekabentuk Produk (Product Design Engineering) RK84 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Kejuruteraan Elektronik (Electronics Engineering) RK86 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Kejuruteraan Fotonik (Fotonic Engineering) RK89 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Kejuruteraan Rangkaian Komputer (Computer Network Engineering) RK93 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Kejuruteraan Elektrik Sistem Tenaga (Electrical Energy System Engineering) RK96 (8 Semesters)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Passed the University General Requirement and Programme Requirement

Passed with minimum **C Grade (2.00)** in Matriculation/Foundation Studies from any of these subjects:

- Physics / Engineering Physics / Chemistry / Engineering Chemistry; and
- Mathematics / Engineering Mathematics

Candidates who do not passed with C Grade in Matriculation/Foundation Studies for Physics Subject, must at least passed with credit in SPM Physics.

and

Candidates must not be blind or must not have any disability that can harm the labs processes.

(This is also to be offered to the Technical Sciences Matriculation students).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK07</td>
<td>Kejuruteraan Alam Sekitar (Environmental Engineering)</td>
</tr>
<tr>
<td>RK12</td>
<td>Kejuruteraan Bahan (Material Engineering)</td>
</tr>
<tr>
<td>RK28</td>
<td>Kejuruteraan Bioproses (Bioprocess Engineering)</td>
</tr>
<tr>
<td>RK32</td>
<td>Kejuruteraan Polimer (Polymer Engineering)</td>
</tr>
<tr>
<td>RK85</td>
<td>Kejuruteraan Elektronik Bioperubatan (Electronic Biomedical Engineering)</td>
</tr>
<tr>
<td>RK90</td>
<td>Kejuruteraan Biosistem (Biosystem Engineering)</td>
</tr>
<tr>
<td>RP52</td>
<td>Keusahawanan Kejuruteraan (Engineering Entrepreneurship)</td>
</tr>
</tbody>
</table>

Passed the General University Requirement and Programme Requirement

Passed with minimum **C Grade (2.00)** in Matriculation/Foundation Studies from any of these subjects:

- Physics / Engineering Physics / Chemistry / Engineering Chemistry; **and**
- Mathematics / Engineering Mathematics

Candidates who do not passed with C Grade in Matriculation/Foundation Studies for Physics Subject, must at least passed with credit in SPM Physics.

and

Candidates must not be blind or must not have any disability that can harm the labs processes.

(This is also to be offered to the Technical Sciences Matriculation students).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP52</td>
<td>Keusahawanan Kejuruteraan (Engineering Entrepreneurship)</td>
</tr>
</tbody>
</table>

Passed the University General Requirement and Programme Requirement

Passed with minimum **C Grade (2.00)** in Matriculation/Foundation Studies from any of these subjects:

Passed **KPM Matriculation/ UM Foundation Studies in Science/UiTM Foundation Studies /equivalent (science/arts/technical or accounting stream)** with:

Minimum C (2.00) in any of these two (2) subjects:

Science Stream/Technical Stream:
- Biology / Computer Science / Civil Engineering Studies/
- Electrical & Electronics Engineering Studies / Mechanical Engineering Studies
Perniagaan Antarabangsa (International Business) RE09 (6 Semesters)

Passed the University General Requirement and Programme Requirement

Passed with minimum **C Grade (2.00)** in Matriculation/Asasi from any of this subjects:

Passed KPM Matriculation/ UM Foundation Studies in Science/ UiTM Foundation Studies (science/arts/technical or accounting stream) with:

Minimum C (2.00) in any of these two (2) subjects:

Science Stream/Technical Stream:
 Electrical & Electronics Engineering Studies/ Mechanical Engineering Studies

 Or

Arts/Accounting Stream:
- Mathematics / Economics / Business Management/Accounting/ Computer Science

And

Passed with at least C credit in SPM in these subjects:

i) English

and

ii) **Any one (1) of these subjects:**
- Matematik / Matematik Tambahan / Prinsip Perakaunan / Ekonomi Asas / Perdagangan / Pengajian Keusahawanan
ADMISSION REQUIREMENTS

ADMISSION REQUIREMENTS FOR UNDERGRADUATE DEGREE PROGRAM ACADEMIC SESSION OF 2011/2012

STPM

<table>
<thead>
<tr>
<th>No.</th>
<th>Programme</th>
<th>STPM Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i) Programme Code (iii) Programme Duration</td>
<td>University General Requirement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed the Malaysian Certificate of Education/Sijil Pelajaran Malaysia (SPM)/equivalent with credit in Bahasa Melayu / Bahasa Malaysia or credit in Bahasa Melayu / Bahasa Malaysia July paper; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed Malaysian Higher Certificate of Education/Sijil Tinggi Persekolahan Malaysia (STPM)/equivalent with minimum CGPA 2.00;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C Grade (NGMP 2.00) in General Studies; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C Grade (NGMP 2.00) in other two (2) subjects. and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed with at least Band 1 in Malaysian University English Test (MUET).</td>
</tr>
<tr>
<td>1.</td>
<td>Kejuruteraan Mikroelektronik (Microelectronics Engineering) RK05 (8 Semesters)</td>
<td>Passed the University General Requirement and Programme Requirement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passed with minimum C Grade (2.00) in STPM/equivalent from any of these subjects:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics / Chemistry; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics T / Further Mathematics T</td>
</tr>
</tbody>
</table>

2. Kejuruteraan Mekanikal (Mechanical Engineering) RK08 (8 Semester)

3. Kejuruteraan Pembuatan (Manufacturing Engineering) RK13 (8 Semesters)
3. **Kejuruteraan Pembuatan (Manufacturing Engineering)**
 RK13 (8 Semesters)
 Candidates who do not passed with C Grade in STPM Physics, must at least passed with credit in SPM Physics.
 and
 Candidates must not be blind or must not have any disability that can harm the labs process.

4. **Kejuruteraan Komputer (Computer Engineering)**
 RK20 (8 Semesters)
 (This is also to be offered to the Technical Sciences Matriculation students).

5. **Kejuruteraan Sistem Elektrik (Electrical System Engineering)**
 RK23 (8 Semester)

6. **Kejuruteraan Mekatronik (Mechatronics Engineering)**
 RK24 (8 Semesters)

7. **Kejuruteraan Perhubungan (Communication Engineering)**
 RK53 (8 Semesters)

8. **Kejuruteraan Metalurgi (Metallurgical Engineering)**
 RK56 (8 Semester)

9. **Kejuruteraan Bangunan (Building Engineering)**
 RK82 (8 Semesters)

10. **Kejuruteraan Rekabentuk Produk (Product Design Engineering)**
 RK84 (8 Semesters)

11. **Kejuruteraan Rekabentuk Produk (Product Design Engineering)**
 RK84 (8 Semesters)
 Passed the University General Requirement and Programme Requirement

 Passed with minimum **C Grade (2.00)** in STPM/equivalent from any of these subjects:

 - Mathematics T / Further Mathematics T

 Candidates who do not passed with C Grade in STPM Physics, must at least passed with credit in SPM Physics.
 and
 Candidates must not be blind or must not have any disability that can harm the labs process.

 (This is also to be offered to the Technical Sciences Matriculation students).

12. **Kejuruteraan Elektronik (Electronics Engineering)**
 RK86 (8 Semesters)

13. **Kejuruteraan Fotonik (Fotonic Engineering)**
 RK89 (8 Semesters)
<table>
<thead>
<tr>
<th></th>
<th>Passed the University General Requirement and Programme Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Kejuruteraan Rangkaian Komputer (Computer Network Engineering) RK93 (8 Semesters)</td>
</tr>
<tr>
<td>15.</td>
<td>Kejuruteraan Elektrik Sistem Tenaga (Electrical Energy System Engineering) RK96 (8 Semesters)</td>
</tr>
<tr>
<td>16.</td>
<td>Kejuruteraan Alam Sekitar (Environmental Engineering) RK07 (8 Semesters)</td>
</tr>
<tr>
<td>17.</td>
<td>Kejuruteraan Bahan (Material Engineering) RK12 (8 Semesters)</td>
</tr>
<tr>
<td>18.</td>
<td>Kejuruteraan Bioproses (Bioprocess Engineering) RK28 (8 Semesters)</td>
</tr>
<tr>
<td>19.</td>
<td>Kejuruteraan Polimer (Polymer Engineering) RK32 (8 Semesters)</td>
</tr>
<tr>
<td>20.</td>
<td>Kejuruteraan Elektronik Bioperubatan (Electronic Biomedical Engineering) RK85 (8 Semesters)</td>
</tr>
<tr>
<td>21.</td>
<td>Kejuruteraan Biosistem (Biosystem Engineering) RK90 (8 Semesters)</td>
</tr>
<tr>
<td>22.</td>
<td>Keusahawanan Kejuruteraan (Engineering Entrepreneurship) RP52 (6 Semesters)</td>
</tr>
</tbody>
</table>

Passed with minimum C Grade (2.00) in STPM/equivalent from any of these subjects:

- **Physics / Chemistry**;
- and
- **Mathematics T / Further Mathematics T**

Candidates who do not passed with C Grade in STPM Physics, must at least passed with credit in SPM Physics. and

Candidates must not be blind or must not have any disability that can harm the labs process.

(This is also to be offered to the Technical Sciences Matriculation students).

Passed with minimum C Grade (2.00) in STPM/equivalent from any of these subjects:

Passed STPM/equivalent with at least C (2.00) in any of these two (2) subjects:

- Mathematics T / Further Mathematics T /
- Mathematics S / Physics / Chemistry / Biology /
- Pengajian Perniagaan / Ekonomi / Perakaunan / Computing
And

Passed with at least C credit in SPM in these subjects:

i) English
and
ii) Any one (1) of these subjects:

Physics/Chemistry Biology / Mathematics / Additional Mathematics.

23. Perniagaan Antarabangsa (International Business) RE09 (6 Semesters)

Passed the University General Requirement and Programme Requirement

Passed with minimum C Grade(2.00) in STPM/equivalent from any of these subjects:

Passed STPM/equivalent with at least C (2.00) in any of these two (2) subjects:

- Mathematics S / Mathematics T / Further Mathematics T / Business Study / Accountings / Economics / Physics / Chemistry / Biology / Computing

And

Passed with at least C credit in SPM in these subjects:

i) English
and
ii) Any one (1) of these subjects:

Mathematics / Additional Mathematics.
Prinsip Perakaunan / Economics / Trades/ Business Study / Business Accounting
ADMISSION REQUIREMENTS

ADMISSION REQUIREMENTS FOR UNDERGRADUATE DEGREE PROGRAM
ACADEMIC SESSION OF 2011/2012

DIPLOMA/EQUIVALENT

<table>
<thead>
<tr>
<th>No.</th>
<th>Programme Code (i)</th>
<th>Programme Name (ii)</th>
<th>Programme Duration (iii)</th>
<th>Diploma/Equivalent Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passed the Malaysian Certificate of Education/Sijil Pelajaran Malaysia (SPM)/equivalent with credit in Bahasa Melayu / Bahasa Malaysia or credit in Bahasa Melayu / Bahasa Malaysia July paper; and Passed Diploma/equivalent that recognised by Malaysian Government and the University Senate; or Passed Malaysian Higher Certificate of Education/STPM for the year 2009 or previous with at least CGPA 2.00 and obtained: • C Grade (NGMP 2.00) Pengajian Am; and • C Grade (NGMP 2.00) in two (2) other subjects: or Passed Matriculation/Foundation Studies for the year 2009 or previous with at least CGPA 2.00; and Passed with at least Band 1 in Malaysian University English Test (MUET).</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Kejuruteraan Mikroelektronik (Microelectronics Engineering) RK05 (8 Semesters)</td>
<td>Passed the University General Requirement and Programme Requirement Diploma</td>
<td>Obtained a Diploma from any Public Universities/Institusi Pengajian Tinggi Awam (IPTA) or other institutions that is recognised in field that related to the programme applied;</td>
</tr>
</tbody>
</table>
3. **Kejuruteraan Pembuatan** (Manufacturing Engineering)
 RK13 (8 Semesters)
 Posses at least **CGPA 2.50** at Diploma level.
 Exemption from subjects that equivalent will be given based on the grades from the diploma level.
 (Candidates must send their full diploma academic transcripts to UniMAP during application).

 or

4. **Kejuruteraan Komputer** (Computer Engineering)
 RK20 (8 Semesters)
 STPM/Matrikulasi KPM/PASUM/Asasi UiTM (Year 2009 or previous)

 Passed with minimum **C Grade (2.00)** in **STPM/Matrikulasi KPM/PASUM/Asasi UiTM/equivalent** from any of these two (2) subjects:
 - Physics / Chemistry / Engineering Physics / Engineering Chemistry
 and
 - Mathematics T / Further Mathematics T / Mathematics

 Candidates who do not passed with C Grade in SPM Physics, must at least passed with credit in SPM Physics.

 and

5. **Kejuruteraan Sistem Elektrik** (Electrical System Engineering)
 RK23 (8 Semesters)
 Candidates must not be blind or must not have any disability that can harm the labs process.

6. **Kejuruteraan Mekatronik** (Mechatronics Engineering)
 RK24 (8 Semesters)

7. **Kejuruteraan Elektronik Industri** (Industrial Electronics Engineering)
 RK45 (8 Semesters)

8. **Kejuruteraan Perhubungan** (Communication Engineering)
 RK53 (8 Semesters)

9. **Kejuruteraan Metalurgi** (Metallurgical Engineering)
 RK56 (8 Semesters)

10. **Kejuruteraan Bangunan** (Building Engineering)
 RK82 (8 Semesters)

11. **Kejuruteraan Rekabentuk Produk** (Product Design Engineering)
 RK84 (8 Semesters)

12. **Kejuruteraan Elektronik** (Electronics Engineering)
 RK86 (8 Semesters)

13. **Kejuruteraan Fotonik** (Fotonic Engineering)
 RK89 (8 Semesters)
Passed the University General Requirement and Programme Requirement

Diploma

Obtained a Diploma from any Public Universities/Institusi Pengajian Tinggi Awam (IPTA) or other institutions that is recognised in field that related to the programme applied;

Posses at least CGPA 2.50 at Diploma level.

Exemption from subjects that equivalent will be given based on the grades from the diploma level.

(Candidates must send their full diploma academic transcripts to UniMAP during application).

or

STPM/ KPM Matriculation/ PASUM/UiTM Foundation Studies (Year 2009 or previous)

Passed with minimum Gred C (2.00) in STPM/ KPM Matriculation/ PASUM/UiTM Foundation Studies /equivalent from any of these two (2) subjects:

- Physics / Chemistry/ Engineering Physics / Engineering Chemistry / Biology;
 and
- Mathematics T/ Further Mathematics T / Mathematics

Candidates who do not passed with Gred C Grade in STPM Physics, must at least passed with credit in SPM Physics.

and

Candidates must not be blind or must not have any disability that can harm the labs process.

14.	Kejuruteraan Rangkaian Komputer (Computer Network Engineering) RK93 (8 Semester)
15.	Kejuruteraan Elektrik Sistem Tenaga (Electrical Energy System Engineering) RK96 (8 Semester)
16.	Kejuruteraan Alam Sekitar (Environmental Engineering) RK07 (8 Semester)
17.	Kejuruteraan Bahan (Material Engineering) RK12 (8 Semesters)
18.	Kejuruteraan Bioproses (Bioprocess Engineering) RK28 (8 Semesters)
19.	Kejuruteraan Polimer (Polymer Engineering) RK32 (8 Semesters)
20.	Kejuruteraan Elektronik Bioperubatan (Electronic Biomedical Engineering) RK85 (8 Semesters)
21.	Kejuruteraan Biosistem (Biosystem Engineering) RK90 (8 Semesters)
22.	Keusahawanan Kejuruteraan (Engineering Entrepreneurship) **RP52** (6 Semesters)

Diploma

Obtained a Diploma from any Public Universities/Institusi Pengajian Tinggi Awam (IPTA) or other institutions that is recognised in field that related to the programme applied;

Posses at least **CGPA 2.50** at Diploma level.

Exemption from subjects that equivalent will be given based on the grades from the diploma level.
(Candidates must send their full diploma academic transcripts to UniMAP during application).

or

STPM/Matrikulasi KPM/PASUM/Asasi UiTM (Year 2009 or previous)

(Science/arts/technical or accounting stream):

Minimum C (2.00) in any of these two (2) subjects:

- **Science Stream/Technical Stream:**

 or

- **Arts/Accounting Stream:**
 - Mathematics / Economics / Business Management / Accounting / Computer Science
23. Perniagaan Antarabangsa (International Business)
RE09 (6 Semesters)

Passed the University General Requirement and Programme Requirement

Diploma

- Obtained a Diploma from any Public Universities/Institusi Pengajian Tinggi Awam (IPTA) or other institutions that is recognised in field that related to the programme applied;

- Posses at least CGPA 2.50 at Diploma level.

- Exemption from subjects that equivalent will be given based on the grades from the diploma level.

 (Candidates must send their full diploma academic transcripts to UniMAP during application).

or

STPM/Matrikulasi KPM/PASUM/Asasi UiTM (Year 2009 or previous)

(Science/arts/technical or accounting stream):

Minimum C (2.00) in any of these two (2) subjects:

- **Science Stream/Technical Stream:**

- or

- **Arts/Accounting Stream:**
 - Mathematics / Economics / Business Management/ Accounting/ Computer Science
ADMISSION REQUIREMENTS FOR UNDERGRADUATE DEGREE PROGRAM
ACADEMIC SESSION OF 2011/2012

INTERNATIONAL STUDENTS

<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Junior Middle School, and Senior Middle School).</td>
<td>Bachelor of Engineering (Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Graduated from Senior Middle School with Senior High School Certificate.</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain minimum average score of 60% in Senior High School Certificate.</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Junior Secondary School, and Senior Secondary School @ Sekolah Menengah Atas).</td>
<td>Bachelor of Engineering (Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Pass Senior Secondary @ Sekolah Menengah Atas examination.</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Pass with minimum Grade Point Average (GPA) of 6.00 in Senior Secondary @ Sekolah Menengah Atas examination.</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Country</td>
<td>General Requirements</td>
<td>Specific Requirements</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>Bachelor of Business</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Completed 12 years of education in 3 levels of schools (Elementary School, Intermediate School, and General Secondary School/Technical Junior College)</td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>• Pass and obtain at least 60% in General Secondary Education Certificate (Tawjihiyah)/Secondary Vocational School Diploma/ Secondary Commercial School Diploma/ Secondary Agricultural School Diploma examination.</td>
<td>(Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td></td>
<td>• Business/ Economics/ Commerce/Accounting : 60%</td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Country</td>
<td>General Requirements</td>
<td>Specific Requirements</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Iraq | • Completed 11 or 12 years of education in 3 levels of schools (Primary School, Intermediate Secondary School, and Preparatory Secondary School/Vocational Secondary School)
• Pass and obtain at least 60% in Preparatory Secondary School/Vocational Secondary School.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
* (Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%
* (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
| | | Bachelor of Engineering
* (Electronics-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
| Nigeria | • Completed 12 years of education in 2 or 3 levels of schools (Primary School, Junior Secondary School and Senior Secondary School/Technical Secondary School)
• Pass and obtain at least B+ in five (5) subjects in Senior School Certificate.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
* (Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%
* (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
| | | Bachelor of Engineering
* (Electronics-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
<p>|</p>
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Lower Secondary School and Upper Secondary School/Religious School)</td>
<td>Bachelor of Engineering (Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Pass and obtain at least CGPA 2.4 or 60% in Higher Secondary School Certificate (Mathayam Suksa 6)</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5/Equivalent (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>• Completed 11 or 12 years of education in 2 levels of schools (Primary School, General Secondary School and Technical Secondary School/ Upper Secondary School /Specialized Secondary School)</td>
<td>Bachelor of Engineering (Bio-Based)</td>
</tr>
<tr>
<td></td>
<td>• Pass and obtain at least 60% in Technical Secondary School/ Upper Secondary School /Specialized Secondary School.</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5/Equivalent (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
</tbody>
</table>

Bachelor of Business

- English : 60%
- Mathematics : 60%
- Physics/Chemistry/Biology : 60%

or

Business/ Economics/ Commerce/Accounting : 60%
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
</table>
| Yemen | • Completed 12 years of education in 2 levels of schools (Basic and Upper Secondary School /Vocational Secondary School)
 • Pass both Intermediate School Certificate (ISC) and General Secondary School Certificate (Al-Thanawiya) examination.
 • Obtain at least 60% in General Secondary School Certificate (Al-Thanawiya).
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 \[(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).\]
 • Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
 \[(Electronic-Based)\]
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry : 60%
 \[(Bio-Based)\]
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Bachelor of Business
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Business/ Economics/ Commerce/Accounting : 60% |
| Somalia | • Completed 12 years of education in 2 levels of schools (Primary School and Secondary School)
 • Pass and obtain at least 60% in Secondary School Leaving Certificate (SSLC) or Technical Secondary School Certificate.
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 \[(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).\] | Bachelor of Engineering
 \[(Electronic-Based)\]
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry : 60%
 \[(Bio-Based)\]
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Bachelor of Business
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauritius</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Lower Secondary School and Upper Secondary School)</td>
<td>Bachelor of Engineering (Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Pass Higher School Certificate / General Certificate of Education A-level examination and pass at least three (3) subjects (Advanced Level).</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Sudan</td>
<td>• Completed 11 years of education in 2 levels of schools (Basic School and Secondary School / Technical School)</td>
<td>Bachelor of Engineering (Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Pass and obtain at least 60% in Sudan Secondary School Certificate.</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td>Country</td>
<td>General Requirements</td>
<td>Specific Requirements</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Syria | • Completed 12 years of education in 3 levels of schools (Basic Education I School, Basic Education II School and General Secondary School / Technical Secondary School)
• Pass and obtain at least 60% in Al-Shahada Al Thanawiyah Al Amma @ Secondary School Leaving Certificate / Al Shahada Al-Thanawiyah Al-Fanniyya @ Technical Baccalaureat.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Business
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

| Jordan | • Completed 12 years of education in 2 levels of schools (Basic School and Secondary School / Vocational Secondary School)
• Pass and obtain at least 60% in Al-Tawjihi @ General Secondary Education Certificate / Vocational Certificate. | Bachelor of Engineering
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

or
Business/ Economics/ Commerce/Accounting : 60%

Bachelor of Engineering (Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

Business/ Economics/ Commerce/Accounting : 60%

Other requirements that have been endorsed by University Senate.
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
 • Other requirements that have been endorsed by University Senate.</td>
<td>Bachelor of Business
 (Bio-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Business/ Economics/ Commerce/Accounting : 60%</td>
</tr>
<tr>
<td>Pakistan</td>
<td>• Completed 12 years of education in 2 levels of schools (Secondary School and Higher Secondary School)
 • Pass and obtain at least 60% in Higher Secondary School Certificate (HSSC).
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
 • Other requirements that have been endorsed by University Senate.</td>
<td>Bachelor of Engineering
 (Electronic-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry : 60%
 (Bio-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Business/ Economics/ Commerce/Accounting : 60%</td>
</tr>
<tr>
<td>Country</td>
<td>General Requirements</td>
<td>Specific Requirements</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Libya** | • Completed 12 years of education in 2 levels of schools (Basic School and Secondary School)
• Pass and obtain at least 60% in Secondary Education Certificate.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 550 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%
(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
or
Business/ Economics/ Commerce/Accounting : 60% |
| **Ethiopia** | • Completed 12 or 13 years of education in 3 levels of schools (Primary School, General Secondary School and Preparatory Secondary School/ Technical/Vocational School)
• Pass and obtain at least Grade C for 5 subjects in Ethiopian Higher Education Entrance Examination (EHEEE) or Technical/Vocational School Certificate.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%
(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
or
Business/ Economics/ Commerce/Accounting : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
</table>
| Iran | • Completed 12 years of education in 3 levels of schools (Primary School, Secondary School and Pre-University)
 • Pass Secondary/High School Diploma and Pre-University Certificate (KONKUR) with minimum score of 13 in KONKUR.
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
 • Other requirements that have been endorsed by University
 Bachelor of Engineering (Electronic-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry : 60%
 (Bio-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Bachelor of Business
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 • Business/ Economics/ Commerce/Accounting : 60% |
| Palestine | • Completed 12 years of education in 2 levels of schools (Basic School and Secondary School/Technical Secondary School)
 • Pass and obtain at least 60% in Secondary School Certificate (Al-Tawjihi).
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent
 (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
 • Other requirements that have been endorsed by University
 Bachelor of Engineering (Electronic-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry : 60%
 (Bio-Based)
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 or
 Bachelor of Business
 • English : 60%
 • Mathematics : 60%
 • Physics/Chemistry/Biology : 60%
 • Business/ Economics/ Commerce/Accounting : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad</td>
<td>• Completed 13 years of education in 2 levels of schools (Primary School and Secondary School)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pass and obtain at least 60% in Baccalaureat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 550 / IELTS 5.5 / Equivalent (Candidates who do not possess equivalent qualification as TOEFL 550 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>• Completed 13 years of education in 2 levels of schools (Primary School and Secondary School)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pass Diploma of Secondary Education (Baccalaureat) with minimum score of 15.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent (Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>General Requirements</td>
<td>Specific Requirements</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Bangladesh | • Completed 12 years of education in 2 levels of schools (Secondary School and Higher Secondary School)
• Pass and obtain at least 60% in Higher Secondary School Certificate (HSSC).
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent

 (Candidates who do not possess equivalent qualification as TOEFL 525/IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University | Bachelor of Engineering
 (Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

 (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

 or
 Bachelor of Business
 (Electronic-Based)
• English : 60%
• Mathematics/Physics/ : 60%
• Physics/Chemistry/Biology : 60%

 or
 Business/ Economics/ Commerce/Accounting : 60%

 (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

 or
 Business/ Economics/ Commerce/Accounting : 60% |
| United Arab Emirates (UAE) | • Completed 12 years of education in 3 levels of schools (Primary School, Preparatory School and Secondary School)
• Pass and obtain at least 60% in Secondary School Leaving Certificate (Al-Tawjihiyya).
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent

 (Candidates who do not possess equivalent qualification as TOEFL 525/IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
 (Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

 (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

 or
 Bachelor of Business
 (Electronic-Based)
• English : 60%
• Mathematics/Physics/ : 60%
• Physics/Chemistry/Biology : 60%

 or
 Business/ Economics/ Commerce/Accounting : 60%

 (Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

 or
 Business/ Economics/ Commerce/Accounting : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebanon</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Intermediate School and Secondary School)</td>
<td>Bachelor of Engineering</td>
</tr>
<tr>
<td></td>
<td>• Pass and obtain at least 12/20 in Baccalauréat Libanais.</td>
<td>(Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>- English : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>- Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>- Physics/Chemistry : 60%</td>
</tr>
<tr>
<td>Myanmar</td>
<td>• Completed 11 years of education in 3 levels of schools (Primary School, Middle School, and High School)</td>
<td>Bachelor of Engineering</td>
</tr>
<tr>
<td></td>
<td>• Pass University Entrance Examination and obtain minimum average score of 360/600 or 60%.</td>
<td>(Bio-Based)</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>- English : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>- Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>- Physics/Chemistry/Biology : 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or Business/ Economics/ Commerce/Accounting : 60%</td>
</tr>
</tbody>
</table>

Bachelor of Engineering

- English : 60%
- Mathematics : 60%
- Physics/Chemistry : 60%

(Bio-Based)

- English : 60%
- Mathematics : 60%
- Physics/Chemistry/Biology : 60%

Bachelor of Business

- English : 60%
- Mathematics : 60%
- Physics/Chemistry/Biology : 60%

or

Business/ Economics/ Commerce/Accounting : 60%
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
</table>
| Tunisia | • Completed 13 years of education in 2 levels of schools (Primary School and Secondary School)
 • Pass and obtain at least 12/20 in Baccalauréat.
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent

(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).

• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

| Cameroon | • Completed 14 years of education in 2 levels of schools (Primary School, Secondary School and High School)
 • Pass GCE A-Level with average score of 60%/equivalent, and obtain at least C in relevant subjects.
 • Obtain TOEFL 525 / IELTS 5.5 / Equivalent

(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).

• Other requirements that have been endorsed by University Senate. | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%

| | Bachelor of Business
• English : 60%
• Mathematics/Physics/ : 60%
• Physics/Chemistry/Biology : 60%

or
Business/ Economics/ Commerce/Accounting : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
</table>
| Egypt | • Completed 11 or 13 years of education in 3 levels of schools (Primary School, Preparatory School and General Secondary School/Technical Secondary School)
• Pass and obtain at least 60% in Secondary Education Certificate *(Thanaweya Amma).*
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. |
| | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60% |
| | Bachelor of Business
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
or
Business/ Economics/ Commerce/Accounting : 60% |
| Cambodia | • Completed 12 years of education in 3 levels of schools (Primary School, Lower Secondary School and Upper Secondary School)
• Pass Diploma of Upper Secondary with minimum score of C/60%/equivalent.
• Obtain TOEFL 525 / IELTS 5.5 / Equivalent
(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).
• Other requirements that have been endorsed by University Senate. |
| | Bachelor of Engineering
(Electronic-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry : 60%

(Bio-Based)
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60% |
| | Bachelor of Business
• English : 60%
• Mathematics : 60%
• Physics/Chemistry/Biology : 60%
or
Business/ Economics/ Commerce/Accounting : 60% |
<table>
<thead>
<tr>
<th>Country</th>
<th>General Requirements</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>• Completed 12 years of education in 3 levels of schools (Primary School, Lower Secondary School and Upper Secondary School)</td>
<td>Bachelor of Engineering</td>
</tr>
<tr>
<td></td>
<td>• Pass University Entrance Examination and obtain minimum average score of 6.0/60%/equivalent.</td>
<td>(Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
<tr>
<td>Turkey</td>
<td>• Completed 12 years of education in 2 levels of schools (Basic School and High School)</td>
<td>Bachelor of Business</td>
</tr>
<tr>
<td></td>
<td>• Pass Lise Diplomasi and obtain minimum average score of 3.00/60%/equivalent.</td>
<td>(Electronic-Based)</td>
</tr>
<tr>
<td></td>
<td>• Obtain TOEFL 525 / IELTS 5.5 / Equivalent</td>
<td>• English : 60%</td>
</tr>
<tr>
<td></td>
<td>(Candidates who do not possess equivalent qualification as TOEFL 525 / IELTS 5.5 are required to undergo Intensive English Course for six (6) months in UniMAP).</td>
<td>• Mathematics : 60%</td>
</tr>
<tr>
<td></td>
<td>• Other requirements that have been endorsed by University Senate.</td>
<td>• Physics/Chemistry : 60%</td>
</tr>
</tbody>
</table>
ACADEMIC SYSTEM

The Bachelor of Engineering curriculum is designed to be completed in four years while the Bachelor in Business is to be completed in three years with each academic year divided into Semester I and Semester II. Each semester consists of 14 study weeks. Examination will be held at the end of the semester. Courses that are offered in Bachelor in Engineering programme are divided into four levels which are level 100, 200, 300, and 400 that are equivalent to Year 1, 2, 3 and 4.

For the purposes of graduation, Bachelor of Engineering students must undergo for 120 units Core Courses while Bachelor of Business students must undergo for 72 or 74 units of Core Courses (taken according to specialization) and 30 units of Elective Courses. Students also need to take University’s core courses of 15 units for Bachelor of Engineering and 18 units for Bachelor of Business.

Students are also required to submit a copy of Malaysian University English Test (MUET) result as a requirement to graduate. Students also need to obtain at least a C grade for the University’s Core Course (W) and at least a grade D for Core Courses (T) and a minimum of 2.00 CGPA before they are eligible to be considered for the award of a degree.

PROGRAMME STRUCTURE

Bachelor of Engineering and Bachelor of Business programme structures are clustered as shown in the following table. Students are required to undergo 135 units (Bachelor of Engineering) and 120 or 122 units (Bachelor of Business) in order to graduate as shown in Figure 1.

<table>
<thead>
<tr>
<th>COURSES</th>
<th>UNIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINEERING CORE COURSES</td>
<td>120</td>
</tr>
<tr>
<td>UNIVERSITY CORE COURSES</td>
<td>15</td>
</tr>
<tr>
<td>a. Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>b. Thinking Skills</td>
<td>2</td>
</tr>
<tr>
<td>c. University Malay Language</td>
<td>2</td>
</tr>
<tr>
<td>d. University English Language</td>
<td>2</td>
</tr>
<tr>
<td>e. Islam and Asian Civilization</td>
<td>2</td>
</tr>
<tr>
<td>f. Ethnic Relations</td>
<td>2</td>
</tr>
<tr>
<td>g. Co-Curriculum</td>
<td>1</td>
</tr>
<tr>
<td>h. Optional Course</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSES</th>
<th>UNIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS CORE COURSES</td>
<td>72</td>
</tr>
<tr>
<td>UNIVERSITY CORE COURSES</td>
<td>18</td>
</tr>
<tr>
<td>a. Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>b. Thinking Skills</td>
<td>2</td>
</tr>
<tr>
<td>c. University Malay Language</td>
<td>2</td>
</tr>
<tr>
<td>d. University English Language</td>
<td>2</td>
</tr>
<tr>
<td>e. Islam and Asian Civilization</td>
<td>2</td>
</tr>
<tr>
<td>f. Ethnic Relations</td>
<td>2</td>
</tr>
<tr>
<td>g. Skills and Technology in Communication</td>
<td>2</td>
</tr>
<tr>
<td>h. Business Communication</td>
<td>3</td>
</tr>
<tr>
<td>i. Co-Curriculum</td>
<td>1</td>
</tr>
<tr>
<td>ELECTIVES</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
</tr>
</tbody>
</table>
TYPES OF COURSES

I. Core Courses (Bachelor of Engineering)
Core Courses consist of engineering courses that are compulsory to be taken by students according to their major. These courses are part of the requirements for graduation. Students who fail the Core Courses must repeat them before they can graduate.

II. Core Courses (Bachelor of Business)
Bachelor of Business Core Courses is divided into two groups which are (i) Business Core Courses and (ii) Programme Core Courses.

Business Core Courses consist of contemporary courses in business field which are compulsory to be taken by business students while Programme Core Courses are offered according to the student’s major.

These courses are part of the graduation criteria. Students who fail any of the core courses must repeat them before they can graduate.

III. Elective Courses (Bachelor of Business)
Students can choose elective courses according to the fields that they are interested in.

IV. University Courses
University Courses are courses outside of the student’s major. These courses are offered by the Centre for Communication Skills and Entrepreneurship. Some of these courses are compulsory while others are optional.

V. Optional Courses
Optional Courses are any courses which are offered by the Centre for Communication Skills and Entrepreneurship other than the 13 compulsory units from University Courses as listed in Figure 1 (Bachelor of Engineering). Students need to complete two units of Optional Courses.

Optional Courses calculations are as follows: students who took two units of Foundation English (EUW112) before taking University English Language (EUW212) are considered to have fulfilled a unit of Optional Courses or, students who took 3 units of Co-Curriculum – (only one unit are compulsory) are considered to have fulfilled the Optional Courses.

DEFINITION AND VALUE ‘CREDIT’ ‘AND ‘UNIT ‘

In UniMAP, credit’ and ‘unit’ are used as if they carry the same meaning. ‘Unit’ changes to ‘credit’ after students have passed a subject.

Core Courses that are offered consist of theory and practical. The contact hours are as follows:

I. Theory Component
One unit of theory component is equivalent to 1 hour of lecture/ tutorial/ reading per week or 14 hours per semester.

II. Practical Component
One unit of practical component is equivalent to 2 contact hours in a week or 28 hours in a semester.
TEACHING AND LEARNING APPROACHES AT UniMAP

Bachelor of Engineering

UniMAP places great emphasis on teaching and learning approaches, be they theoretical or practical, which are in tandem with industrial development. Students’ understanding of a theoretical component is enhanced through practical learning session apart from product design, problem solving, team-work, preparation and presentation of reports.

Generally, a four unit core course comprises three units of theory component and one unit of practical component. One unit of the theory component normally comprises one-hour of lecture while the one unit of practical component usually comprises two hours of lab work. Due to logistical restrictions, these courses are arranged in a such a way that for the four-unit course, students will undergo a two-hour lecture followed by two hours of lab work followed by another hour of lecture in a week. Some of the courses offered are 100% lab oriented courses.

For most of the core courses, students are required to complete a mini project and sit for an exam or viva at the end of the semester.

The practical components consist of the following teaching and learning models:

- **Lab Intensive Learning** – a group of students consisting of two or three members will carry out an experiment. In some basic lab intensive programmes, a student will conduct an experiment individually (1:1) and not in a group.

- **Teaching Factory Learning** – a group of students consisting of five to six students will carry out a process run using actual scale equipment used in the industry.

- **E-Learning** – Learning approach that is reinforced using ICT that is equipped with the latest conventional learning apparatus. Students learn the course or selected topics using moduls that can be accessed directly from the UniMAP website. These modules consist of lecture notes in multimedia format using audio, video, graphic, animation, simulation, games and numerous interaction-oriented activities.

- **Exposure to Industry** – Students will undergo visits to the industry for a certain period of time throughout their study at UniMAP. These include IndEx programmes, InTra (Industrial Training), Industrial Entrepreneurship and others.

Industrial Training

Industrial Training is a 6 unit course. 3rd year Engineering students are required to undergo 12 weeks of industrial training in order to get 6 credits for this course. An average of 8 contact hours per day for 5 days in a week, which is 8 hours per day X 5 days = 40 hours per week, is regarded as contact hours evaluation (working hours for designated organization/corporation)

The main objectives of the Industrial Training are to:

- Instill professionalism among the students
- Give awareness to students on the importance and connection between the industrial training, laboratory work and engineering theories.
- Provide early exposure on the industrial environment and practices to the students. Students also are given the opportunity to equip themselves with the necessary skills and knowledge needed in their respective academic and training fields.

The Centre for Industrial Collaboration (CIC) is also coordinating the following programmes that require industries’ involvement:

1. **Industrial Exposure (IndEx)**
 - Short term exposure programme – 1 day
 - Experts, managers and engineers from the industry are invited to give talks, briefings, demonstrations and dialogues according to the dates given.
 - Involves visits to the industry
 - This exposure is only for students who have completed their first academic session.

2. **Industrial Entrepreneurship Exposure (IndEnt)**
 - Short term exposure programme – 1 day
 - Involvement of small sector industries, R&D firms and government bodies such as the
Ministry of Entrepreneur Development.
- Includes demonstrations, dialogues and briefings
- Involves only second year students.

BACHELOR OF BUSINESS (ENGINEERING ENTREPRENEURSHIP)

This programme is based on a three-year coursework that is equivalent to six semesters on a full-time basis. The teaching and learning approaches for this programme not only cover lectures and tutorials but also practical training via the Business Incubator Programme. After the fourth semester, the students will participate in the Business Incubator Programme for twelve (12) weeks. They will earn 6 credit hours.

Students are mentored by companies in business incubators. This will give them the opportunity to be part of the team involved in product development which may even lead to commercialisation. They should experience how ideas and innovations can lead to products for consumers. In addition to that, they will see for themselves the flow of business processes.

At the end of the Business Incubator Programme, students are required to prepare a report on their experience throughout the Business Incubator Programme that they have undergone in the selected companies.

Malaysian business incubators form a tightly knit group under the National Incubator Network Association (NINA) which is affiliated with the Association of Asean Business Incubation (AABI). Among its members include Technology Park Malaysia, Malaysian Technology Development Corporation, Sirim and Kulim Technology Park Corporation. UniMAP works closely with these organisations to warrant the success of the programme.

BACHELOR OF BUSINESS (INTERNATIONAL BUSINESS)

This programme is based on a three-year coursework that is equivalent to six semesters on a full-time basis. The teaching and learning methods comprise lectures, tutorials and practical (via industrial training and International Business Field Trips).

During the second and fourth semester, students will undergo industrial training. Students have two options to choose which is Option 2+2 or 3+1. For the 2+2 option, students will undergo two phases (2 months +2 months) of industrial training in selected multinational companies in Malaysia. Moderation will be conducted with collaboration from the UniMAP Centre for Industrial Collaboration. In the second option which is the Option 3+1, students will undergo industrial training in the selected multinational companies in Malaysia for the first three months and go for an educational trip overseas during the last month. Students are given the freedom to choose any of the two options given for their industrial training according to their interest and financial abilities. Apart from industrial training, students also have to prepare their final year project in their third year of study (semester 5 and 6). The Final Year Project consists of 6 credit hours.

UNIVERSITY CORE COURSES

I. Engineering Entrepreneurship (2 units)
 Students are required to take two units of Engineering Entrepreneurship course. Students are advised to take other courses in ‘entrepreneurship’ category, whereby the units that are collected will be counted as Optional Courses. Students need to pass with at least a C.

II. Ethnic Relations (2 units)
 Two units of Ethnic Relation course is compulsory for all students. Students need to pass with at least a C.

III. Islam and Asian Civilization (2 units)
 Islam and Asian Civilization is compulsory for all students. Students need to pass with at least a C.

IV. University Malay Language (2 units)
 Two units of University Malay Language course is compulsory and is a requirement for graduation. Students need to pass with at least a C.

V. University English Language (2 units)
 Two units of University English Language course is compulsory and is a requirement for graduation. However, students who acquired band 1, 2 and 3 in MUET need to take Foundation English before enrolling for University English. The two extra units from Foundation English are counted as Optional Courses. Students need to pass with at least a C for University English Language.
VI. Thinking Skills (2 units)
It is compulsory for students to take 2 units of Thinking Skills course. Students need to pass with at least a C.

VII. Skills and Technology in Communication (2 units)
It is compulsory for students to take 2 units of skills and technology in communication course. Student need to pass with at least C.

VIII. Business Communication (3 units)
Students from Bachelor of Business need to take this course and pass with at least a C.

IX. Co-Curriculum Programme
Students need to undergo at least one unit of co-curriculum throughout their study in UniMAP. Only 3 units are required for graduation. One unit is compulsory while the other 2 units are considered as Optional Courses.

COURSE CODE
Each course has its own code. The first letter in the code is ‘E’ which stands for Bachelor. The second letter shows the faculty while the third letter shows whether the courses are Core Courses or University Core Courses.

Figure 2 shows the letters that are used for each faculty.

<table>
<thead>
<tr>
<th>Second letter in the code</th>
<th>Faculty offering courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>School of Electrical Systems Engineering</td>
</tr>
<tr>
<td>M</td>
<td>School of Microelectronic Engineering</td>
</tr>
<tr>
<td>K</td>
<td>School of Computer & Communication Engineering</td>
</tr>
<tr>
<td>N</td>
<td>School of Mechatronic Engineering</td>
</tr>
<tr>
<td>B</td>
<td>School of Material Engineering</td>
</tr>
<tr>
<td>P</td>
<td>School of Manufacturing Engineering</td>
</tr>
<tr>
<td>R</td>
<td>School of Bioprocess Engineering</td>
</tr>
<tr>
<td>A</td>
<td>School of Environmental Engineering</td>
</tr>
<tr>
<td>U</td>
<td>Centre for Communication Skills and Entrepreneurship</td>
</tr>
</tbody>
</table>

The three last course codes represent the following – the first number is the level of course. The second and third numbers are the course number. The codes are simplified in Figure 3:

Figure 3– Course Code and Faculty.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>4 = Level 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = Level 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = Level 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = Level 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W = University Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE REGISTRATION
All students are required to register for the course offered at a date specified by the University. Course registration is done online by all UniMAP students. Senior students will register according to the students’ preceding semester results [after the results have been announced]. Subjects taken for the subsequent semester shall be registered before the end of the compulsory registration period [2 weeks] / fourteen days (14th) of the current semester.
It is compulsory for the student to meet with their Academic Advisor after registration together with the printed registration slip. The Academic Advisor will validate / not validate the subject registered by the students. If the Academic Advisor approves of the course registered by the students, then validation will be made in the system. Upon the approval of a student’s subject registration by the Academic Advisor, the student can print out the corrected subject registration slip. If the Academic Advisor disagrees with the courses registered by the students, then the students should re-register. Only with the Academic Advisor’s consent will the student registration be valid.

It is the responsibility of the students to check and ensure that all particulars stated in the Subject Registration Slip are correct.

PROBATION STUDENT REGISTRATION [P]

Students who failed to register subjects within the specific period of time are subject to a penalty RM50. Late registration shall not exceed the third week [3rd] of the compulsory registration period. The students must fill the HEA-09 [Borang Pendaftaran Kursus Lewat] and must have the approval from the Dean.

ADD/DROP/WITHDRAWAL COURSE

It is compulsory for students to log in into the registration system at the beginning of the semester to check their registration status. Students are allowed to do add / drop course by online for 2 weeks. Students may add / or drop subjects up to the second (2) week of the Semester. After the add / drop online week ended, the student must fill the HEA-11 form [Borang Tambah Kursus] before handing it to the School or Registrar Office to register the subjects.

After add / drop session ended, the students are allowed to drop a course starting from the 2nd week until the sixth week by using the HEA-10 form [Borang Gugur Kursus]. Students must have the Dean’s approval for the form before handing it to the Registrar to be recorded. The form can be obtained from the Registrar, School or portal.

After the drop session ended, the students are allowed to withdraw from the course after the sixth week (not exceeding the 14th week or before the examination week) by filling the HEA-19 form [Borang Tarik Diri] and will be penalized RM50 for each course. Students must have the Dean’s approval for the form before handing it to the Registrar to be recorded. The form can be obtained from the Registrar, School or portal. Students must take note that even though they have withdrawn from the course, the registration of the course [withdrawn course] will be appeared in the student transcript. However, the grade will not be included in the calculation of GPA and CGPA.

CHANGE OF PROGRAMME

Change of programme is not encouraged because it involves distribution of resources that have been planned at the beginning of each academic session. However, an appeal to change programme can be considered based on certain conditions as follows:

- Application can only be done by students who have completed at least the first semester. Students must fill in completely Borang Permohonan Pertukaran Program Pengajian / Change of Programme Application Form (HEA-12). The form can be obtained at the Registry Department or at Schools. However, for special cases, application to change the programme in the first semester can be done, subjected...
to approval by the Vice Chancellor or Deputy Vice Chancellor (Academic & International).

• Application must be presented within the first two weeks of the semester.

• Concrete reasons need to be given in written form and must be attached together with recommendation letter from both the Dean and RPS of current and applied schools.

• Every application that has been recommended by the Dean of current and applied schools must be verified by the Dean of Academic Affairs, followed by an approval by Vice Chancellor / Deputy Vice Chancellor (Academic & International) before it is officially recorded by the Registry Department (Students Admission & Records Unit).

• For students who obtain scholarships or PTPTN or other types of sponsorships, they must get approval from their respective sponsors. Students need to deal directly with their sponsors or seek advice from Student Affairs and Alumni Department.

POSTPONEMENT OF STUDY

Application to postpone a study is permitted for students who have health problem and are verified of being ill by government hospitals or University’s panel doctors only. Application made because of other reasons can be given consideration if it is reasonable, and is recommended by RPS, Dean of School, Dean of Academic Affairs, and last but not least, approved by the Vice Chancellor / Deputy Vice Chancellor (Academic and International).

Students can apply for postponement of study by filling in Borang Penangguhan Pengajian / Postponement of Study Application Form (HEA/HEP-13) which can be obtained from Registry Department or at their respective schools. Application should be submitted to the Dean of the School. The Dean has the right to request the student to consult a counsellor (if necessary) before making a decision.

Application for postponement of study should be submitted before the seventh week of an academic session, except those with written approval. Application made after that period will only be allowed for medical reasons and is verified by government hospitals or University’s panel doctors. Students are not allowed to postpone their studies more than two semesters consecutively.

Application for postponement of study from international students must be accompanied by letter of recommendation from their sponsors (for sponsored students only).

For students who postpone their studies due to health problem, the applied semester will not be counted for graduation (without penalty). Students who postpone their studies due to other problems apart from health problem, the semester will be counted for graduation (with penalty) unless permitted otherwise. Students who suffer from a long term health problem which may hinder their studies, can be considered to be terminated from continuing their studies upon recommendation from government hospitals or University’s panel doctors.

A warning letter will be issued to students who do not register for present semester without submitting any application to postpone their studies. Students who fail to submit postponement application for a certain period of time will be terminated from the university. Their names will be dropped from List of Registered Students and verified of being quitted.

STUDENT STATUS

A student’s status cannot be directly determined according to the year of study. It is determined based on the accumulated credit units. The details are listed in Table 4 (a) and Table 4 (b):

Table 4 (a) Determinant of Student Status (Bachelor of Engineering)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 36 unit</td>
<td>37 – 73 unit</td>
<td>74 – 106 unit</td>
<td>107 – 135 unit</td>
</tr>
</tbody>
</table>

Table 4 (b) Determinant of Student Status (Bachelor of Business)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 40 unit</td>
<td>41 – 80 unit</td>
<td>81 – 122 unit</td>
</tr>
</tbody>
</table>
A student's academic performance is measured using the Grade Point Average (GPA) system throughout the university academic session. A student who obtains at least a 2.00 for their GPA in a semester will be awarded the 'Active' (A) status and will be allowed to continue with the next semester. Students are also required to obtain minimum Cumulative Grade Point Average (CGPA) of 2.00 in order to graduate.

For those students who are allowed to take the Curative Course (course offered during long semester break), their curative course examination results will be combined with their semester 2 examination results in order to determine the GPA and student academic status. If the combined average is better, then the student will be given a new status, but if the combined average is not good, it maintained the standard of Semester II.

A student with GPA less than 2.00 in a semester will be given the Probation 1 (P1) status. The Probation 2 (P2) status is given to students with GPA less than 2.00 for two consecutive semesters. If the GPA of students still get a GPA of less than 2.00 for the following semester, the student will not be allowed to continue with their studies, except if the CGPA of students exceeding 2.00, and the University approval. The University authorities have the right to terminate any students who do not perform and fulfil the academic requirements stated by the university.

STUDENT’S MINIMUM AND MAXIMUM PERIOD OF STUDY

Bachelor of Engineering Students have to complete their period of study within the duration given that is within the minimum 8 semesters (4 years) or the maximum 14 semesters (7 years). However, for students who are given unit exemptions, the maximum duration given to complete their periods of study cannot be less than 6 semesters (3 years) and not more than 12 semesters (6 years).

CURATIVE COURSES

Curative Courses are held after the second semester. Registration for curative courses are very limited and depends on the particular course is offered from the School and the Senate. Students must fill in the HEA-09c [Borang Pendaftaran Kursus Kuratif]. Students are only allowed to take a maximum of 10 units at one time. The learning and teaching of these curative courses are in the form of tutorials. The curative course normally comprises 2 weeks of tutorial and 1 week of examination.

EXEMPTION OF UNITS

The provision of Credit Exemption according to the Academic Regulations of a semester system is for the purpose of giving recognition to a student’s prior learning. A Credit Exemption is the total credit exempted for the conferment of a Diploma / that is given based on the academic qualification of Diploma as approved by the University. Credit Exemption is given to a student who has obtained the minimum grade of C+ in a subject according to the University grade system and subject to terms and conditions determined by the University.

A student who has attended a similar or equivalent subject with 1/3 similar learning content and passed with a minimum of C+ according to the grading system of the University may be given Credit Exemption. The application for the relevant courses can be merged [2 courses or more] for one course in UniMAP to be exempted. Exemptions for Bahasa Melayu, Bahasa Inggeris dan co-curriculum are not allowed.

Exemptions for Tamadun Islam and Tamadun Asia only can be done for students who have taken TITAS as long as it is the same name with the same unit or more. SPM results cannot be taken into consideration for exemption. Students will not be allowed to apply the exemption for Industrial Training.

EXAMINATION AND EVALUATION SYSTEM

Written examination is conducted at the end of the semester. Every student must fulfil the requirements for lecture, tutorial, practicum and others before being eligible to sit for an exam. The duration for exams is as follows:

<table>
<thead>
<tr>
<th>Course Value</th>
<th>Examination Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit</td>
<td>2 hours</td>
</tr>
<tr>
<td>2 – 4 units</td>
<td>3 hours</td>
</tr>
</tbody>
</table>
Students’ examination results are based on course work component and written examination. A course work consists of 100% if the entire course is lab structured. Coursework consists of assignments, lab reports and test. Students’ achievement evaluation is based on letter grades and points as follows:

Figure 6– Letter grades and points

<table>
<thead>
<tr>
<th>GRADE</th>
<th>GRADE POINT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>A-</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>3.50</td>
<td>PASS</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>1.75</td>
<td>CONDITIONAL PASS</td>
</tr>
<tr>
<td>D+</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>FAIL</td>
</tr>
<tr>
<td>D-</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7 – Calculation of GPA and CGPA:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
<th>Vale Grade [NG]</th>
<th>Grade [G]</th>
<th>Total NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKT121</td>
<td>3</td>
<td>3.75</td>
<td>A-</td>
<td>11.25</td>
</tr>
<tr>
<td>EMT102</td>
<td>4</td>
<td>2.50</td>
<td>C+</td>
<td>10.00</td>
</tr>
<tr>
<td>EMT111</td>
<td>4</td>
<td>3.50</td>
<td>B+</td>
<td>14.00</td>
</tr>
<tr>
<td>EMT112</td>
<td>4</td>
<td>4.00</td>
<td>A</td>
<td>16.00</td>
</tr>
<tr>
<td>EQT102</td>
<td>3</td>
<td>1.75</td>
<td>C-</td>
<td>5.25</td>
</tr>
<tr>
<td>EUT122</td>
<td>2</td>
<td>2.75</td>
<td>B-</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>62.00</td>
</tr>
</tbody>
</table>

GPA = 62.00/20 = 3.10

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
<th>Vale Grade [NG]</th>
<th>Grade [G]</th>
<th>Total NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT200</td>
<td>3</td>
<td>3.50</td>
<td>B+</td>
<td>10.50</td>
</tr>
<tr>
<td>EKT122</td>
<td>4</td>
<td>2.00</td>
<td>C</td>
<td>8.00</td>
</tr>
<tr>
<td>EKT230</td>
<td>4</td>
<td>4.00</td>
<td>A</td>
<td>16.00</td>
</tr>
<tr>
<td>EKT240</td>
<td>4</td>
<td>3.50</td>
<td>B+</td>
<td>14.00</td>
</tr>
<tr>
<td>EQT203</td>
<td>3</td>
<td>3.75</td>
<td>A-</td>
<td>11.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>59.75</td>
</tr>
</tbody>
</table>

GPA = 59.75/18 = 3.32

CGPA = Total Accumulated Grade Value
 Total Accumulated Unit
 = \(\frac{62.00 + 59.75}{20 + 18} \)
 = 3.20

APPEAL TO RE-CHECK EXAMINATION RESULTS

On certain occasions, students might want to apply for a re-check on their examination result. Students are only allowed to appeal for a re-check 15 days after examination results are released officially by the Registrar. Application after this duration will not be entertained.

If the student is still unsatisfied with his/her grades, he/she can apply for an “appeal to re-check the course” so that his/her examination answer script will be re-marked.

Students can obtain the forms needed for this process from their Faculty. This will need to be filled in two copies.

Students will be charged RM50 per course for their appeal. Payment in cash or postal orders is to be directed to the Bursary. Students will have to keep one copy of the forms.

ENGLISH LANGUAGE USAGE

Malay language is the official language of the university. However English is used widely in the teaching and learning process. This is to help students in their career. For courses that are taught in English, the examination will be conducted in the same language.
ACADEMIC ADVISOR AND BUDDY SYSTEM

Academic Advisor and Buddy System or RPS connects students and lecturers to discuss and decide on students' study plan. Even though the registration is done online, students are advised to meet with their Buddy or Academic Advisor during the registration exercise.

RPS is a system where academic staff supervise small group of students for the whole duration of the students' stay in UniMAP. 'Supervision' here entails frequent meetings under informal settings, where students can relax with their staff ("buddies") and discuss academic and social issues that concern them. Students who do not hold satisfactory academic performance look to their buddies as 'mentors', in which case the student becomes the 'mentee' of the buddy, who helps the student out every step of the way.

ACADEMIC SUPPORT CENTRES

These centres are established to support UniMAP in terms of achieving academic excellence.

I. Centre for Communication Skills and Entrepreneurship

Beginning Semester 1, Academic Session 2009/2010, this Centre will be offering the Bachelor of Business degree programmes while at the same time it will still offer the University Core Courses.

II. Engineering Centre

The Engineering Centre was established to manage labs and common workshops that are needed for courses that are offered in UniMAP.

Engineering Centre also supports research and design in UniMAP. A few courses are offered here such as Basic Engineering Skills that is compulsory for all students from PPK Electric, PPK Microelectronic and PPK Computer & Relations.

III. Institute of Engineering Mathematics

The Institute of Engineering Mathematics is a centre for planning and handling engineering mathematics curriculum in UniMAP. It also serves as as a reference centre in providing expertise in mathematical research method, simulation and statistical method. IEM also serves as a training center for in-campus and out-campus personnels in fields related to mathematics.

IV. Centre of Industrial Cooperation

Centre of Industrial Cooperation liaises with industrial sectors in a lot of aspects, especially in programmes directly related towards student’s learning. Programmes such as exposure to industry, industrial forum, staff industrial training and others are handled by this centre. Some of these programmes are compulsory for all students.

V. Information Technology and Communication Centre

Information Communication and Technology Centre is established to implement ICT while assisting with academic and university’s administration. ICT Centre also develops and facilitates computerized information system in the university. It also provides consultants in ICT and helps to promote the usage of technology in University.

VI. Library

The University’s Library is established to provide facilities and quality services to support the teaching/learning and research in this University.

VII. Teaching and Learning Unit

This unit helps towards coordinating services that uplift the university’s academic staff’s professionalism. This unit also plans courses, workshops and counselling for students.
ACADEMIC MANAGEMENT DIVISION, DEPARTMENT OF REGISTRY

The Academic Management Division is responsible for handling matters related to student enrolment, data processing and student records, examinations, Senate and students’ graduation.

The units in the Academic Management Division are:

1. Students Admission and Records Unit
2. Exam Unit
3. The Senate and Graduation Unit

Address:

Academic Management Division
The Department of Registry,
Universiti Malaysia Perlis,
Ground Floor, No. 34 & 35,
Hong Leong Bank Building,
Off Jalan Bukit Lagi,
01000 Kangar,
PERLIS.

1. Admission and Student Records Unit

Students Admission and Records Unit is responsible for handling matters related to the admission of students, student records and data processing. Among the duties and responsibilities undertaken are:

1. Controlling the whole process of recruitment and registration of students in the country in the first degree and diploma.
2. Controlling the recruitment and registration of international students in the first degree.
3. Managing and controlling the data processing aspects of the Student Information System.
4. Managing students’ personal records and student status, including leave with permission, postponement of study and change of student programs.
5. Managing students’ online course registration for each semester.
6. Managing the process of students’ unit exemption and credit transfer.

List of Staffs in Students Admission and Records Unit

Miss. Ruzalina Ibn Ruslan
Senior Assistant Registrar
Tel: 04-9798702
Fax: 04-9798703
E-mail: ruzalina@unimap.edu.my

Miss Norren Shariza Mohamed Mokhtar
Assistant Registrar
Tel: 04-9798701
Fax: 04-9798703
E-mail: norren@unimap.edu.my

Mr. Mohamad Hairi Shaari
Assistant Registrar
Tel: 04-9772984
Fax: 04-9798703
E-mail: hairishaari@unimap.edu.my

Mrs. Rosniza Abdul. Hamid
Administrative Assistant (P / O)
Tel: 04-9798706
Fax: 04-9798703
E-mail: rosniza@unimap.edu.my

Miss. Azniyanty Abdullah
Administrative Assistant (P / O)
Tel: 04-9797941
Fax: 04-9798703
E-mail: azniyanty@unimap.edu.my

Mr. Faizan Abdul
Administrative Assistant (P / O)
Tel: 04-9798706
Fax: 04-9798703
E-mail: faizan@unimap.edu.my

Mr. Amirrul Amar Mazri
Administrative Assistant (P / O)
Tel: 04-9797940
Fax: 04-9798703
E-mail: amirrulamar@unimap.edu.my
2. Examination Unit

Examination Unit is responsible in managing and monitoring the processes of final examination related matter. Among the tasks undertaken by the unit are as follows:

1. To issue Examination Circular to School/Centre/Institute.
2. To issue Examination Schedule for diploma and bachelor degree programmes.
3. To manage the Final Semester Examination within the stipulated time frame.
4. To be a Secretariat for the University Board of Examination.
5. To manage examination data processing using Students Information System.
6. To announce examination result for the Final Semester Examination.
7. To manage requestt from student about appeal for rechecking examination result.
8. To issue Academic Transcript upon Convocation.

The list of staffs:

Mr. Osman Ahmad
Senior Assistant Registrar
Tel : 04-9798704
Fax : 9798703
E-mail : osman@unimap.edu.my

Mrs. Rahaida Ab. Rahim
Assistant Registrar
Tel : 04-9798705
Fax : 04-9798703
E-mail : rahaida@unimap.edu.my

Address:
Examination Unit
Academic Management Division
Registry Department
Universiti Malaysia Perlis
1st Floor, No. 34 & 35,
Beside Hong Leong Bank
Jalan Bukit Lagi
01000 Kangar
PERLIS
Or e-mail : unitexam@unimap.edu.my
3. The Senate and Graduation Unit

Provide secretariat services to the Senate meetings and also to the committee established under Senate like the Education Committee, the Ad-Hoc Committee, the Honorary Award Committee and Standing Committee on Nomination for Honorary Degree. This unit also responsible for the preparation date of the semester, managing the course offering list and deal with the Ministry of Education Malaysia(MOE) and the Public Service Department (PSD) of the new program offerings and recognition of degrees.

List of Staff in the Senate and Graduation Unit:

Mrs. Wardah Hanim Md. Nor
Assistant Registrar
Tel: 04-9798700
Fax: 04-9798703
E-mail: wardah@unimap.edu.my

Mr. Muhammad Azuan Mohamad Nasir
Assistant Registrar
Tel: 04-9798561
Fax: 04-9798703
E-mail: mazuan@unimap.edu.my

Mrs. Maisarah Ab. Rahim
Administrative Assistant (P / O)
Tel: 04-9798707
Fax: 04-9798703
E-mail: maisarah@unimap.edu.my

Mrs. Tihazariah Husin
Administrative Assistant (P / O)
Tel: 04-9798707
Fax: 04-9798562
E-mail: tihazariah@unimap.edu.my

Mr. Mohd Hafizi Che Yusof
Administrative Assistant (P / O)
Tel: 04-9798707
Fax: 04-9798562
E-mail: hafiziyusof@unimap.edu.my
Programmes Offered:

- Engineering Diploma (Microelectronic Engineering)
- Engineering Degree (Hons) (Microelectronic Engineering)
- Engineering Degree (Hons) (Electronic Engineering)
- Engineering Degree (Hons) (Photonic Engineering)
- Masters of Science (Microelectronic Engineering)
- Philosophy of Doctor
Introduction

The School of Microelectronic Engineering was the first school that was established in UniMAP on 30th April 2002. The philosophy of the school’s establishment is to emphasize on the importance of the integrity of knowledge and technical practice. Based on that philosophy, the programs that are being offered by the School of Microelectronic Engineering have been formed:

- To fulfill industries’ needs
- To fulfill the requirements of professional bodies such as Institution of Engineers Malaysia (IEM) and Boards of Engineers Malaysia (BEM)
- To ensure the balance between knowledge theory and engineering practice
- To ensure the programs’ contents are always updated as per current technological advance
LEKTURERS

Professor Dr. Zul Azhar B. Zahid Jamal
Ph.D. (Electronic Materials) Univ. of Liverpool,
B.Sc., M.A. (Phys.) Western Michigan University, MIEEE
Tel.: +604-9798729
E-mail: zulazhar@unimap.edu.my

Associate Professor Dr. Johari Bin Adnan
Ph.D. (Magnetic Instruments) Univ. of Newcastle
Upon Tyne, UK,
M.Sc. (Space Physics), B.Sc. (Physics),
Univ. of Iowa, USA
Tel.: +604-9798140
E-mail: johari@unimap.edu.my

Associate Professor Dr. Prabakaran A/L Poopalan
Ph.D. (Optical Fiber),
M.Sc. (Laser), B.Sc. (Phys.), UM
Tel.: +604-9798480
E-mail: prabakaran@unimap.edu.my

Prof. Dr. Uda B. Hashim
Ph.D. (Microelectronics),
B.Sc. (Phys.), UKM, MIEEE
Tel.: +604-9851208
E-mail: uda@unimap.edu.my

Dr. Asral B. Bahari Jambek
Ph.D, (Electronic) Univ. of Edinburgh, UK
M.Sc, (Electronics Eng.), UPM
B.Eng, (Electronics Eng.), Univ. of Southampton, UK
Tel: +604-9798432
E-mail: asral@unimap.edu.my

Dr. Mohamad Halim Abd. Wahid
Ph.D.(Electronic Engineering), Aston University, U.K
M.Sc. (Semiconductor Physics), UM
B.Sc. (Physics), UM.
Tel.:+604-9798301/ +604-9798345
E-mail: mhalim@unimap.edu.my

Dr. Mukhzeer Bin Mohamad Shahimin
Ph.D. (Biophotonics),
B.Eng. (Electronic Engineering), University of Southampton, U.K, MIEEE, MSPIE.
Tel: 04-9798327
Email: mukhzeer@unimap.edu.my

Dr. Yufridin Bin Wahab
PhD (Victoria University, Australia)
M.Sc. (Electronic Eng.)
B.Eng.(Electrical-Electronic) USM, MIEEE
Tel: 04-9798877
Email: yufridin@unimap.edu.my

Mrs. Noraini Binti Othman
M.Sc (Microelectronic) UTP,
B.Eng. (Microelectronic) UKM
Tel : +604-9798146
E-mail:noraini_othman@unimap.edu.my

Mrs. Norina Bt. Idris
M.Sc. (Rekabentuk FPGA) USM,
B.Sc EE (NMSU), Dip. Ed., MIEEE
Tel: +604-9798387
E-mail: norinas@unimap.edu.my

Mrs. Hasnizah Aris
M.Sc. (Electrical and Electronics-MEMS)
UKM
B.Eng. (Electrical, Electronic and System)
UKM,
Tel: +604-9798475
E-mail: hasnizah@unimap.edu.my

Mrs. Siti Zarina Bt. Md. Naziri
M.Sc (Electrical & Electronics) USM
B.Eng. (Electrical & Electronics) USM
Tel: +604-9798452
E-mail: sitizarina@unimap.edu.my

Miss Nur Syakimah Binti Ismail
M.Sc. (Microelectronics), UKM
B.Eng., Electrical & Electronic, UKM
Tel : +604-979807
E-mail: syakimah@unimap.edu.my

Mrs. Safizan Bt. Saari
M.Eng. (Electric & Electronics), Toyama Univ. Japan
B.Eng. (Electric & Electronics), Fukui Univ. Japan
Dip. Eng. (Electronic Control), Nagano Kosen, Japan
Tel: +604-9798465
E-mail: safizan@unimap.edu.my

Mr. Vithyacharan A/L Retnasamy
Tel : +604-9855172
E-mail: rcharan@ unimap.edu.my

Miss Norhayati Binti Sabani
M.Sc. (Microelectronics), UKM
B.Eng. (Microelectronics), UniMAP
Tel : +604-9798430
E-mail: norhayati@unimap.edu.my

Miss Bibi Nadia Binti Taib
M.Sc. (Microelectronic), UKM
B.Eng. (Microelectronic), UniMAP
Tel : +604-9798141
E-mail: bibinadia@ unimap.edu.my

Mrs. Hasnizah Aris
M.Sc. (Electrical and Electronics-MEMS)
UKM
B.Eng. (Electrical, Electronic and System)
UKM,
Tel: +604-9798475
E-mail: hasnizah@unimap.edu.my

Mr. Shaiful Nizam Bin Mohyar
M.Eng (Nanomaterial System), Gunma Univ., Japan.
B.Eng (Electronic), UEC, Tokyo, Japan.
Tel :+604-9798414
E-mail: nizammohyar@unimap.edu.my
Mrs. Norazeani Binti Abdul Rahman
M.Sc. (Microelectronics), UKM
B.Eng. (Microelectronic), UniMAP
Tel : +604-9798419
E-mail: azeani@unimap.edu.my

Mr. Mazlee Bin Mazalan
B. Eng (Microelectronic), UniMAP
M.Eng. (Microelectronic), Victoria University
Tel: 04-9798143
Email: mazleemazalan@unimap.edu.my

Dr. Neoh Siew Chin
B. Tech (Quality Control & Instrumentation) USM
Ph. D. (Artificial Intelligence) USM
Tel : 04-9798417
Email : scneoh@unimap.edu.my

Mr. Shamsul Amir Bin Abdul Rais
M.Eng (Sustainable Energy and Environmental Engineering) Osaka University
B.Eng (Nuclear Engineering) Osaka University
Tel : 04-9798330
Email : shamsulamir@unimap.edu.my

Dr. Sohiful Anuar Bin Zainol Murad
PhD (RF IC Design), Kyushu Univ. Japan.
M.Sc. (Electronic System Design Engineering) USM,
B.Eng.(Electronic), Saga Univ. Japan.
Email: sohiful@unimap.edu.my

Mrs. Nor Roshidah Bt Yusof
M.Sc Solid State Physics, USM
B.Sc Applied Science (Engineering Physics), USM
Tel: 049798409
Email: roshidahyusof@unimap.edu.my

Dr. Rozanna Aina Binti Mualat Osman
B. Eng (Microelectronic), UniMAP
Sarjana M.Phil Sheffield Univ, UK
Email: rozana@unimap.edu.my

Mr. Arif Mawardi Bin Ismail @ Suhaimee
B.Sc (Physic), UTM
M.Sc (Physic), Bonn Univ, German
Email: arifmawardi@unimap.edu.my

Mr. Razaidi Bin Hussin
M.Sc. (Microelectronics), UniMAP
B.Eng. (Microelectronic), Victoria University
Tel: 04-9798148
Email: shidee@unimap.edu.my

Dr. Neoh Siew Chin
B. Tech (Quality Control & Instrumentation) USM
Ph. D. (Artificial Intelligence) USM
Tel : 04-9798417
Email : scneoh@unimap.edu.my

Mr. Shamsul Amir Bin Abdul Rais
M.Eng (Sustainable Energy and Environmental Engineering) Osaka University
B.Eng (Nuclear Engineering) Osaka University
Tel : 04-9798330
Email : shamsulamir@unimap.edu.my

Dr. Sohiful Anuar Bin Zainol Murad
PhD (RF IC Design), Kyushu Univ. Japan.
M.Sc. (Electronic System Design Engineering) USM,
B.Eng.(Electronic), Saga Univ. Japan.
Email: sohiful@unimap.edu.my

Mrs. Nor Roshidah Bt Yusof
M.Sc Solid State Physics, USM
B.Sc Applied Science (Engineering Physics), USM
Tel: 049798409
Email: roshidahyusof@unimap.edu.my

Dr. Rozanna Aina Binti Mualat Osman
B. Eng (Microelectronic), UniMAP
Sarjana M.Phil Sheffield Univ, UK
Email: rozana@unimap.edu.my

Mr. Arif Mawardi Bin Ismail @ Suhaimee
B.Sc (Physic), UTM
M.Sc (Physic), Bonn Univ, German
Email: arifmawardi@unimap.edu.my

Mr. Razaidi Bin Hussin
M.Sc. (Microelectronics), UniMAP
B.Eng. (Microelectronic), Victoria University
Tel: 04-9798148
Email: shidee@unimap.edu.my

Dr. Neoh Siew Chin
B. Tech (Quality Control & Instrumentation) USM
Ph. D. (Artificial Intelligence) USM
Tel : 04-9798417
Email : scneoh@unimap.edu.my

Mr. Shamsul Amir Bin Abdul Rais
M.Eng (Sustainable Energy and Environmental Engineering) Osaka University
B.Eng (Nuclear Engineering) Osaka University
Tel : 04-9798330
Email : shamsulamir@unimap.edu.my

Dr. Sohiful Anuar Bin Zainol Murad
PhD (RF IC Design), Kyushu Univ. Japan.
M.Sc. (Electronic System Design Engineering) USM,
B.Eng.(Electronic), Saga Univ. Japan.
Email: sohiful@unimap.edu.my

Mrs. Nor Roshidah Bt Yusof
M.Sc Solid State Physics, USM
B.Sc Applied Science (Engineering Physics), USM
Tel: 049798409
Email: roshidahyusof@unimap.edu.my

Dr. Rozanna Aina Binti Mualat Osman
B. Eng (Microelectronic), UniMAP
Sarjana M.Phil Sheffield Univ, UK
Email: rozana@unimap.edu.my

Mr. Arif Mawardi Bin Ismail @ Suhaimee
B.Sc (Physic), UTM
M.Sc (Physic), Bonn Univ, German
Email: arifmawardi@unimap.edu.my

Mr. Razaidi Bin Hussin
M.Sc. (Microelectronics), UniMAP
B.Eng. (Microelectronic), Victoria University
Tel: 04-9798148
Email: shidee@unimap.edu.my

Dr. Neoh Siew Chin
B. Tech (Quality Control & Instrumentation) USM
Ph. D. (Artificial Intelligence) USM
Tel : 04-9798417
Email : scneoh@unimap.edu.my

Mr. Shamsul Amir Bin Abdul Rais
M.Eng (Sustainable Energy and Environmental Engineering) Osaka University
B.Eng (Nuclear Engineering) Osaka University
Tel : 04-9798330
Email : shamsulamir@unimap.edu.my

Dr. Sohiful Anuar Bin Zainol Murad
PhD (RF IC Design), Kyushu Univ. Japan.
M.Sc. (Electronic System Design Engineering) USM,
B.Eng.(Electronic), Saga Univ. Japan.
Email: sohiful@unimap.edu.my

Mrs. Nor Roshidah Bt Yusof
M.Sc Solid State Physics, USM
B.Sc Applied Science (Engineering Physics), USM
Tel: 049798409
Email: roshidahyusof@unimap.edu.my

Dr. Rozanna Aina Binti Mualat Osman
B. Eng (Microelectronic), UniMAP
Sarjana M.Phil Sheffield Univ, UK
Email: rozana@unimap.edu.my

Mr. Arif Mawardi Bin Ismail @ Suhaimee
B.Sc (Physic), UTM
M.Sc (Physic), Bonn Univ, German
Email: arifmawardi@unimap.edu.my

Mr. Razaidi Bin Hussin
M.Sc. (Microelectronics), UniMAP
B.Eng. (Microelectronic), Victoria University
Tel: 04-9798148
Email: shidee@unimap.edu.my

Dr. Neoh Siew Chin
B. Tech (Quality Control & Instrumentation) USM
Ph. D. (Artificial Intelligence) USM
Tel : 04-9798417
Email : scneoh@unimap.edu.my

Mr. Shamsul Amir Bin Abdul Rais
M.Eng (Sustainable Energy and Environmental Engineering) Osaka University
B.Eng (Nuclear Engineering) Osaka University
Tel : 04-9798330
Email : shamsulamir@unimap.edu.my
Mr. Muammar Bin Mohd. Isa
M.Sc. (Microelectronics) UKM
B.Eng. (Electrical & Electronics) UNITEN
E-mail: muammar@unimap.edu.my

Associate Professor Zaliman B. Sauli
E-mail: zaliman@unimap.edu.my

Mr. Mohd. Khairuddin Bin Md. Arshad
M.Sc. (Microelectronics), UKM,
B.Eng. (Mechatronics), UTM,
Dip. Eng. (Power), UTM,
E-mail: mohd.khairuddin@unimap.edu.my

Mrs. Faizah Binti Abu Bakar
B.Eng. (Computer) UTM
E-mail: faizah@unimap.edu.my

Mr. Ramzan Bin Mat. Ayub
M.Sc (Microelectronics) USM
B.Sc (Physics) USM
E-mail: ramzan@unimap.edu.my

Mr. Mohd. Nazrin Bin Md. Isa
M. Sc. (Electronic System Design Engineering) USM, B. Eng (Hons)
(Electrical and Electronics) KUITTHO
E-mail: nazrin@unimap.edu.my

Mr. Mohd. Hafiz Bin Ismail
M.Sc. (Microelectronics System Design),
B.Eng. (Electronics Engineering)
University Of Southampton
Email: hafizismail@unimap.edu.my

Mrs. Nor Farhani Binti Zakaria
MSc in Engineering (Bionics),
BEng. (Electronics), Tokyo Univ. of Technology
Email: norfarhani@unimap.edu.my

SKIM LATIHAN TENAGA PENGAJAR AKADEMIK (SLAB)

Mr. Muhamad Mahyuddin Bin Ramli
Program PhD Univ. Of Surrey

Mrs. Nurul Izza Binti Mohd Nor
Program PhD RMIT

Miss Shazlina Johari
Program PhD, Univ. Of New Zealand

Mrs. Siti Salwa Binti Mat Isa
Program PhD Univ. Of Surrey

Miss Nazuhusna Binti Khalid
Program Ph.D La Trobe Univ.

Mr. Mohd Najib Bin Mohd Yasin
Program Sarjana, Sheffield Univ.

Mr. Mohd Natashah Bin Norizan
Program Sarjana, UKM

Mr. Mohd Fairus Bin Ahmad
Program Sarjana, USM

TECHNICIANS

Mr. Haffiz Abd. Razak
Sijil Elektrik Kuasa, POLIMAS
Tel: 04-9852555
E-mail: haffiz@unimap.edu.my

Mrs. Sharifah Roshida Bt. Syed Mat Noor
Sijil Elektronik Perhubungan, POLIMAS
Tel: 04-9798014/8015
E-mail: sh.roshida@unimap.edu.my

Mrs. Maznah Binti Mat
Sijil Elektronik Perhubungan, POLIMAS
Tel: 04-9798253
E-mail: maznah@unimap.edu.my

Mr. Bahari Bin Man
Sijil Elektrik Kuasa, Politeknik Port Dickson
Tel: 04-9852555
E-mail: bahari@unimap.edu.my

Mr. Mohd Zulkarnail Bin Ab. Hamid
Sijil Teknologi Elektrik (Pemasangan & Perkhidmatan), Kolej Komuniti Arau, Sijil Pembantu Tadbir Sistem Maklumat (Level 2, MLVK), Yayasan Pendidikan Johor
Tel: 04-9798015/8014
E-mail: zulkarnail@unimap.edu.my

Mr. Mohd. Hapiz Alimin B. Mohd. Asri
Sijil Kejuruteraan Elektrik & Elektronik, POLIMAS
Tel: 04-9798029
E-mail: mhapiz@unimap.edu.my

Mr. Mohd. Norhezman Bin Rosli
Sijil Teknologi Elektrik (Pemasangan & Perkhidmatan), Kolej Komuniti Arau
Tel: 04-9852840
E-mail: norhezman@unimap.edu.my

Mr. Mohd Husyaidi Bin Rosni
Sijil Elektrik & Elektronik, Politeknik Tuanku Syed Sirajuddin, Perlis
Tel: +604-979 2555
E-mail: husyaidi@unimap.edu.my

Mrs. Noorshamira Binti Mustaffa
Juruteknik
Sijil Elektrik & Elektronik, Politeknik Tuanku Syed Sirajuddin, Perlis
Tel: +604-9855172
E-mail: noorshamira@unimap.edu.my

Miss Sharifah Salmah Bt. Syed Mat Noor
Sijil Elektronik Perhubungan, POLIMAS
Tel: 04-9791260
E-mail: shsalmah@unimap.edu.my
Mr. Mohamad Fandi Puteh
Sijil Elektrik & Elektronik,
Politeknik Syed Sirajuddin
Tel: 04-9798014/8015
E-mail: fandiputeh@unimap.edu.my

Mr. Muhamad Zulhelmi Abdul Rahman
Sijil Elektrik & Elektronik, POLIMAS
Tel: 04-9852840
E-mail: zulhelmi@unimap.edu.m

Mrs. Zuraida Ismail
Assistant Registrar
Tel: +604-9798313
E-mail: zuraidaismail@unimap.edu.my

Mr. Shah Rizan Bin Mohd. Rejab
Science Officer
Tel: 04-9798308
E-mail: rizan@unimap.edu.my

Mrs. Roslinda Bt. Fazal Mohamad
Administrative Assistant (Finance)
Tel: 04-9798386
E-mail: roslinda@unimap.edu.my

Mrs. Zauyah Binti Mustafa
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798328
E-mail: zauyah@unimap.edu.my

Mrs. Azimah Bt. Aziz@Azaib
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798309
E-mail: azimah@unimap.edu.my

Mr. Mohd Zul Fahmi Bin Zulkifli
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798139
E-mail: zulfahmi@unimap.edu.my

Mr. Mahazar B. Mohamad
General Office Assistant
Tel: 04-9798309
E-mail: mahazar@unimap.edu.my

ADMINISTRATIVE STAFF

Mr. Mohamad Fandi Puteh
Sijil Elektrik & Elektronik,
Politeknik Syed Sirajuddin
Tel: 04-9798014/8015
E-mail: fandiputeh@unimap.edu.my

Mr. Muhamad Zulhelmi Abdul Rahman
Sijil Elektrik & Elektronik, POLIMAS
Tel: 04-9852840
E-mail: zulhelmi@unimap.edu.m

Mrs. Zuraida Ismail
Assistant Registrar
Tel: +604-9798313
E-mail: zuraidaismail@unimap.edu.my

Mr. Shah Rizan Bin Mohd. Rejab
Science Officer
Tel: 04-9798308
E-mail: rizan@unimap.edu.my

Mrs. Roslinda Bt. Fazal Mohamad
Administrative Assistant (Finance)
Tel: 04-9798386
E-mail: roslinda@unimap.edu.my

Mrs. Zauyah Binti Mustafa
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798328
E-mail: zauyah@unimap.edu.my

Mrs. Azimah Bt. Aziz@Azaib
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798309
E-mail: azimah@unimap.edu.my

Mr. Mohd Zul Fahmi Bin Zulkifli
Administrative Assistant
(Clerical/Operational)
Tel: 04-9798139
E-mail: zulfahmi@unimap.edu.my

Mr. Mahazar B. Mohamad
General Office Assistant
Tel: 04-9798309
E-mail: mahazar@unimap.edu.my
PROGRAMME OBJECTIVES FOR PPK MIKROELEKTRONIK

Programme Objectives 1
Graduates who are leaders in the field of electronic engineering or chosen field as demonstrated through career advancement

Programme Objectives 2
Graduates who are members of and contribute to professional society

Programme Objectives 3
Graduates who engaged in life-long learning or continuous education opportunities

Programme Objectives 4
Graduates who contribute towards research and development

Programme Objectives 5
Graduates who are entrepreneurial engineers

PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Ability to understand the professional and ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Ability to understand the need for, and to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Ability to demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE 2011/2012
BACHELOR OF ENGINEERING (HONS) (MICROELECTRONIC ENGINEERING)
SCHOOL OF MICROELECTRONIC ENGINEERING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST</td>
<td>EMT110/3 Engineering Material</td>
<td>EMT124/3 Fundamental of Electrical Engineering</td>
<td>EMT230/3 Thermo dynamic in Electronics</td>
<td>EMT243/3 Introduction to IC Design</td>
</tr>
<tr>
<td></td>
<td>ECT111/3 Engineering Skills</td>
<td>EMT125/3 Digital Electronic Principles I</td>
<td>EMT235/3 Digital Electronic Principles II</td>
<td>EMT245/3 Introduction to Micro processor Design</td>
</tr>
<tr>
<td></td>
<td>EMT114/3 Introduction To Electric Circuit</td>
<td>EMT126/2 Engineering Writing 1</td>
<td>EMT237/3 Electronic Devices</td>
<td>EMT248/3 Signal Analysis</td>
</tr>
<tr>
<td></td>
<td>EMT115/3 Programming Language</td>
<td>EMT127/3 Semiconductor Fundamental</td>
<td>EMT238/3 Electromagnetic Theory</td>
<td>EMT249/3 Analogue Electronics I</td>
</tr>
<tr>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>*EUWXXX/2 Opsyen</td>
<td>EUW212/2 University English</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td></td>
<td></td>
<td>EUW322/2 Thinking Skills</td>
</tr>
<tr>
<td>REQUIRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE:
- *EUWXXX/2* if MUET Band 3 and below is compulsory to take EUW112/2 Basic English.
- **EMT483/3** System on Chip or **EMT488/3** Digital Signal Processing
PROGRAMME OBJECTIVES FOR PPK MIKROELEKTRONIK

Programme Objectives 1
Graduates who are leaders in the field of electronic engineering or chosen field as demonstrated through career advancement

Programme Objectives 2
Graduates who are members of and contribute to professional society

Programme Objectives 3
Graduates who engaged in life-long learning or continuous education opportunities

Programme Objectives 4
Graduates who contribute towards research and development

Programme Objectives 5
Graduates who are entrepreneurial engineers

PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Ability to understand the professional and ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Ability to understand the need for, and to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Ability to demonstrate understanding of project management and finance principles.</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE 2011/2012

BACHELOR OF ENGINEERING (HONS) (ELECTRONIC ENGINEERING)

SCHOOL OF MICROELECTRONIC ENGINEERING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>EMT110/3 Engineering Material</td>
<td>EMT124/3 Fundamental of Electrical Engineering</td>
<td>EMT230/3 Thermo dynamic in Electronics</td>
<td>EMT243/3 Introduction to IC Design</td>
</tr>
<tr>
<td></td>
<td>EMT114/3 Introduction to Electric Circuit</td>
<td>EMT126/2 Engineering Writing I</td>
<td>EMT237/3 Electronic Devices</td>
<td>EMT248/3 Signal Analysis</td>
</tr>
<tr>
<td></td>
<td>EMT115/3 Programming Language</td>
<td>EMT127/3 Semiconductor Fundamental</td>
<td>EMT238/3 Electromagnetic Theory</td>
<td>EMT249/3 Analogue Electronics I</td>
</tr>
<tr>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>*EUWXXX/2 Opsyen</td>
<td>EUW212/2 University English</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

*EUWXXX/2 if MUET Band 3 and below is compulsory to take EUW112/2 Basic English.

EMT483/3 System on Chip or EMT488/3 Digital Signal Processing
PROGRAMME OBJECTIVES FOR PPK MIKROELEKTRONIK

Programme Objectives 1
Graduates who are leaders in the field of electronic engineering or chosen field as demonstrated through career advancement

Programme Objectives 2
Graduates who are members of and contribute to professional society

Programme Objectives 3
Graduates who engaged in life-long learning or continuous education opportunities

Programme Objectives 4
Graduates who contribute towards research and development

Programme Objectives 5
Graduates who are entrepreneurial engineers

PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Ability to understand the professional and ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Ability to understand the need for, and to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Ability to demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE 2011/2012

BACHELOR OF ENGINEERING (HONS) (PHOTONIC ENGINEERING)

SCHOOL OF MICROELECTRONIC ENGINEERING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>ENGINEERING CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>EMT110/3 Engineering Material</td>
<td>EMT124/3 Fundamental of Electrical Engineering</td>
<td>EMT230/3 Introduction to IC Design</td>
<td>EMT358/3 Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>EMT115/3 Programming Language</td>
<td>EMT127/3 Semiconductor Fundamental</td>
<td>EMT238/3 Electromagnetic Theory</td>
<td>EMT391/3 Photonics Engineering</td>
</tr>
<tr>
<td>NON-ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>*EUWXXX/2 Opsyen</td>
<td>EUW212/2 University English</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED UNIVERSITY (15)</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

*EUWXXX/2 if MUET Band 3 and below is compulsory to take EUW112/2 Basic English.

** EM 488/3 Digital signal processing or EMT483/3 Systems on Chip
COURSE SYLLABUS

EMT110/3
ENGINEERING MATERIALS

Course Synopsis

The course is tailored to give students a broad introduction to material properties and limitations. The subject will cover class of material properties, measurement of the properties, and fundamental knowledge to make material selection with better properties. The common micro-structural features of different material classes will be outlined in order to relate material with its process as well as performance.

Course Outcomes

CO 1:
Ability to describe types of material families, material properties, and strategy for designing material.

CO 2:
Ability to analyze, calculate, and compare various material characteristic by measuring material's mechanical properties on strain, stress, and density, fracture, and friction.

CO 3:
Ability to analyze and compare the structure and mechanical behavior of metal, polymer, ceramic and composite.

CO 4:
Ability to analyze and explain specific material properties that related to the field of electric, magnetic, and optical.

CO 5:
Ability to describe and explain material life cycle, oxidation and corrosion mechanism of material.

References

EMT114/3
INTRODUCTION TO ELECTRIC CIRCUITS

Course Synopsis

Introduction to Electric Circuit course introduce students the method of analysis for linear electrical circuits based on the direct current (DC) and alternating current (AC) circuit theorems. The course can be categorized into 2 parts. First part is focusing on DC circuit. It covers the fundamental laws & theorem, circuit analytical technique, passive & active elements. Second part, it emphasize on ac circuit. It is introduces phasors, sinusoidal state analysis, using previous analytical techniques, under sinusoidal state excitation, RLC circuits, AC power calculations & power factor correction, RMS values & 3-phase balanced systems. At the end of the course, the student should be able to apply the theorems and concepts in order to analyze any linear electric circuits.

Course Outcomes

CO 1:
Ability to describe types of material families, material properties, and strategy for designing material.

CO 2:
Ability to analyze, calculate, and compare various material characteristic by measuring material's mechanical properties on strain, stress, and density, fracture, and friction.

CO 3:
Ability to analyze and compare the structure and mechanical behavior of metal, polymer, ceramic and composite.

CO 4:
Ability to analyze and explain specific material properties that related to the field of electric, magnetic, and optical.

CO 5:
Ability to describe and explain material life cycle, oxidation and corrosion mechanism of material.

References

3. Irwin, J.D, Nelms, R.M, Basic Engineering Circuit Analysis, 8th
Course Outcomes

CO1: Ability to apply programming concepts and principles to solve engineering and science problems.

CO2: Ability to apply programming techniques and tools to design computer programming.

CO3: Ability to demonstrate coding, executing and debugging the computer programs.

CO4: Ability to solve engineering related problem using computer programming techniques.

References

Algebra, and basic logic gates. Students are exposed to logic design, particularly combinational logic functions and sequential circuit design.

Course Outcomes

CO1:
Ability to define, convert and demonstrate arithmetic in various number systems.

CO2:
Ability to illustrate, apply and analyze Boolean Algebra to minimize the design of a logic circuit.

CO3:
Ability to describe, illustrate and demonstrate combinational logic circuits design.

CO4:
Ability to identify, illustrate and analyze synchronous and asynchronous sequential circuits design.

References

EMT 126/2
ENGINEERING WRITING I

Course Synopsis

To expose the students to the common requirements and expectations of writing as an engineer; as well as to the format and techniques of writing various types of engineering documents.

Course Outcomes

CO1:
Ability to produce engineering documents in consideration of ethics, spelling, grammar and avoidance of typing errors while at the same time considering the flow and continuity of ideas.

CO2:
Ability to write letters, memos and emails and to produce definitions and descriptions.

CO3:
Ability to write common engineering documents and to utilize sources of engineering information.

References

EMT 127/3
SEMICONDUCTOR FUNDAMENTAL

Course Synopsis

Introduction to semiconductor devices and technology, energy bands and carrier concentration in thermal equilibrium, carrier transport phenomena, p-n junction, bipolar transistor, MOS diode and MOSFET.

Course Outcomes

CO1:
Ability to describe, explain and distinguish the theory and physics of semiconductor and devices.

CO2:
Ability to analyze different semiconductor processes and devices in terms of its problems and performances.

CO3:
Ability to apply knowledge in item 1 and 2 to explain and investigate behaviors in semiconductor devices.

References

1. S. M. Sze, K. K. Ng, Physics of semiconductor devices, John Wiley, 2007, USA.
3. Peter Y. Yu, M. Cardona, Fundamental of Semiconductors: Physics and
Course Outcomes

CO1:
Ability to analyze concept of internal energy change and Thermodynamics cycle.

CO2:
ability to calculate and analyze various Thermodynamics properties using various forms of working fluids properties tables.

CO3:
Ability to analyze thermodynamic first law to solve and to design the thermal systems which involving cyclic processes.

CO4:
Ability to analyze the thermodynamic second law to solve calculation on a thermodynamics system.

CO5:
Ability to analyze thermal transfer in the electronic devices and system.

References

Course Outcomes

CO1:
Ability to Define, Explain and Illustrate digital design concepts.

CO2:
Ability to Define, Construct, and Compare various types of counters; to interpret state tables, state diagrams (Finite State Machines, FSM): Mealy & Moore, and Algorithmic State Machines (ASM) charts; and to construct sequential circuit designs.

CO3:
Ability to Define the basic concepts of memory used in digital circuits; to Explain the principles of Datapaths, Arithmetic Logic Unit (ALU), Shifter and Control Word; and to Construct a simple ALU.

References

Course Outcomes

CO1: Ability to describe and illustrate the fundamental concept of electronic devices.

CO2: Ability to explain the basic operation of Diode and construct and analyze the basic biasing circuits using data sheet.

CO3: Ability to explain the basic operation of BJT transistors and construct and analyze the basic biasing circuits using data sheet.

CO4: Ability to explain the basic operation of JFET transistors and construct and analyze the basic biasing circuits using data sheet.

References

Course Outcomes

CO1: Ability to apply, derive, and analyze the basic concepts of vectors.

CO2: Ability to apply, derive, and analyze electrostatics and magnetostatics.

CO3: Ability to apply, derive, and analyze Maxwells Equation.

CO4: Ability to apply, derive, and analyze electromagnetic waves.

References

EMT 243/3
INTRODUCTION TO IC DESIGN

Course Synopsys

The course provides the students an exposure on basic logic circuits design, layout design, layout simulation of integrated circuits, as well as basic integrated circuits design techniques.

Course Outcomes

CO1: Students will be able to construct and experiment (simulate) logic circuits at transistor level using schematic entry as well as netlists format.

CO2: Students will be able to produce the layout design of a circuit based on the design rules specified and understand the principles of fabrication related.

CO3: Students will be able to analyze CMOS transistor characteristics and to express the performance estimation of a circuit.

References

EMT 245/3
INTRODUCTION TO MICROPROCESSOR DESIGN

Course Synopsis

The aim of this course is to study the microprocessor architecture and relate that knowledge to the design of microprocessor based systems. This includes the design technique for memory, input and output for the systems. The study of microprocessor instruction set and various software development tools are also emphasized as the knowledge are needed in the design of the microprocessor-based systems.

Course Outcomes

CO1: Ability to define, summarize, illustrate and classify the concept and requirement of basic architecture for microprocessor.

CO2: Ability to define, summarize, illustrate, classify and write a structured programed using assembly language.

CO3: Ability to define, summarize, illustrate, classify the interfacing of microprocessor to the I/O devices.

CO4: Ability to define, summarize, illustrate, classify and design and develop a simple application on a microprocessor based system.

References

EMT 248/3
SIGNAL ANALYSIS

Course Synopsis

This course aims to introduce students to the basics of signals and its analysis. To learn how certain input to a system will produce the required output. To understand signal spectra and the methods to analyze signal and its relations.

Course Outcomes

CO1: Ability to reproduce, analyze and solve signal waveform types and characteristics

CO2: Ability to identify, analyze and solve signals and systems via Fourier Transform
CO3: Ability to identify, analyze and solve signals and systems via Laplace Transform

CO4: Ability to identify, analyze and solve signals and systems via Z Transform

References

EMT 249/3 ANALOGUE ELECTRONICS I

Course Synopsis
This course exposes the students to the basic knowledge in analog circuits. The exposure encompasses amplifier design based on bipolar and field effect transistor, for single as well as multistage designs, power amplifiers, frequency response of amplifiers and also exposure to a few specialize device such as Shockley Diodes, SCS, Diac, Triac, SCR, Optotransistor, LASCR and Optocouplers. Emphasis is placed on basic designs aspects and applications. The course has been design to provide basic analog electronics skills covering theories and practicals.

References

Course Outcomes

CO1: Students will be able to describe, explain, apply and analyze various types of amplifier circuits using Bipolar Junction Transistors (BJTs)

CO2: Students will be able to define, explain, apply and analyze various types of amplifier circuits using Field Effect Transistors (FETs)

CO3: Student will be able to define the concept, explain, apply and analyze various classes and several circuit configurations of cascade and power amplifiers

CO4: Students will be able to define and explain and analyze the operations and applications of thyristors and other devices.

EMT 353/3 DIGITAL INTEGRATED CIRCUIT DESIGN

Course Synopsis
This course provides the students an exposure to hardware modeling using Verilog Hardware Description Language, as a means of design entry, simulation and verification of digital circuits. The ModelSim software is used.

Course Outcomes

CO1: Ability to explain, apply and analyze the hardware and software principles of digital design using Verilog HDL

CO2: Ability to construct and design a complete digital system consisting of control and Data path unit by design and simulation using Verilog HDL

CO3: Ability to explain and analyze the working principles and design issues related to field programmable gate array (FPGA) device

References
EMT 354/3
PHOTONIC DEVICES

Course Synopsis
To educate students on the concepts, principles and operation of various major photonics devices. The course assumes basic knowledge of optics, semiconductor and electromagnetic waves. Devices covered in this course are: waveguide and couplers, nonlinear photonics, lasers and semiconductor optoelectronics.

Course Outcomes

CO1:
Ability to explain and evaluate the concept, principles and operation of waveguide and couplers.

CO2:
Ability to explain and evaluate the concept, principles and operation of nonlinear photonics and laser.

CO3:
Ability to explain and evaluate the concept, principles and operation of semiconductor optoelectronics.

References

EMT 355/3
MICROCONTROLLER

Course Synopsis
The aim of this course is to study the concept and requirement of embedded system. This includes the characteristic of embedded system, hardware and software development, single chip microcontroller and programming technique in assembly language and C, basic multitasking concept, developing and embedded system application.

Course Outcomes

CO1:
Ability to define, summarize, illustrate, classify and design embedded system based in a single chip microcontroller

References

EMT 357/3
FUNDAMENTAL OF MICROELECTRONIC FABRICATION

Course Synopsis
Course Outcomes

CO1:
Ability to name, define and explain the essential aspects of the semiconductor fabrication technology which include materials, processes, facilities and standard practices.

CO2:
Ability to state, define, explain, demonstrate and determine important parameters of wafer cleaning, etching and thermal processes.

CO3:
Ability to state, define, explain, demonstrate and determine important parameters of photolithography process, chemical vapour deposition and physical vapour deposition.

References

EMT 358/3
COMMUNICATION ENGINEERING

Course Synopsis

This course will cover all the basic principles and concepts of analog and digital communication including the basic elements of communications, signal analysis, amplitude modulation, angle modulations and digital modulations, as well as transmission channels and medium. In addition, introductions to signal propagations and calculations of signal to noise ratio are also introduced to relate the students with real world applications.

CO4:
Ability to define and explain the digital transmission, solve the problems related to the types of digital modulation.

References

EMT 359/3
ANALOGUE ELECTRONICS II

Course Synopsis

This course offers the students an exposure to the Operational Amplifier: Operation, differential, common-mode, parameters, basic op-amp, practical op-amp circuits, op-amp datasheet; Applications of op-amp and frequency response: Summing amplifier, Voltage Follower, Comparator, Integrator, Differentiato, frequency response and compensation; Feedback Circuits: Concepts of feedback, types of feedback connection, practical feedback circuit, feedback amplifier;
Course Outcomes

CO1:
Students will be able to define, explain, apply and analyze the fundamental, application and feedback concepts of op-amp.

CO2:
Students will be able to describe, explain and construct an amplifiers, oscillators and filters.

CO3:
Students will be able to define, explain and analyze the basic concept, principle and applications of voltage regulators.

References

Course Synopses

EMT 360/3 CONTROL ENGINEERING

This is an introduction course to control systems engineering. Students will be exposed to the mathematical modeling for mechanical, electrical as well as electro-mechanical systems using transfer functions, signal-flow graphs and Mason’s rule. They will conduct system performance analysis in time and frequency domain. System stability will also be studied along with root locus analysis. Finally the students will be introduced to system compensation design using PID and lead-lag controllers. The laboratory sessions will be conducted to enable the students to test the theory.

EMT 363/3 VLSI DESIGN

This course will cover various important elements for VLSI design such as sequential circuit, clock tree, wire interconnect and power dissipation and low power design.
References

EMT 366/2
ENGINEERING WRITING II

Course Synopsis

To educate students on the concepts of technical writing for engineers. The topics covered in this course varies from grammar and punctuation in research reports, to technical how to in writing documentations and up to presentation and business communications.

Course Outcomes

CO1: Ability to explain and distinguish the concept and principles of proper English grammar and punctuation.

CO2: Ability to explain, discuss and solve any research report task in English

CO3: Ability to explain, solve and analyse group work involving presentations, reports and communication task

Topics covered in this course are as follow:

1. Microelectronic fabrication overview
2. Standard CMOS process flow and cross section
3. CMOS process sub-integration module:
 1. Well technology
 2. MOS device isolation technology
 3. Gate oxide integrity and characterisation,
 4. Multilevel interconnect technology (metallisation and multilevel dielectrics, planarisation, contact and via),
 5. MOS scaling effect; short channel effect, hot carrier effect, device characterisation;
 6. IV and CV test.

EMT 367/3
MICROELECTRONIC FABRICATION

Course Synopsis

This course focuses on the fabrication process module of the CMOS technology. The students should be able to design, produce a mask, prepare the runcard (process flow of the MOSFET), fabricate the MOSFET, analyse and characterise the devices electrically. The students should also able to understand the important CMOS process modules such as well technology, isolation technology, multi level interconnect technology as well as related device issues mainly associated with the device miniaturisation.

Course Outcomes

CO1: Ability to explain and construct the essential aspects of the advanced CMOS based process technology, its requirements and issues.

CO2: Ability to discuss and design the major CMOS process modules such as isolation technology, well technology, gate oxide technology and so on. Able to demonstrate and calculate CMOS process parameters which based on the CMOS device requirements.

CO3: Ability to analyse and predict the major CMOS process and device issues. Able to design, fabricate, analyse and evaluate basic integrated circuits components.
EMT 369/3
POWER ELECTRONIC

Course Synopsis

Topics covered are: Fundamental Concepts of Power Electronics, Power Semiconductor Devices, Power Electronic Circuits, AC-DC Conversion, AC-AC Conversion, DC-DC Conversion and DC-AC Conversion.

Course Outcomes

CO1:
Ability to explain power electronic systems operation, applications area and need for efficiency design.

CO2:
Ability to describe different types of power semiconductor device; power diode, SCR, BJT, IGBT, GTO and MOSFET.

CO3:
Ability to analyze and design AC-DC conversion, AC-AC conversion, DC-DC conversion and DC-AC conversion.

EMT 391/3
PHOTONIC ENGINEERING

Course Synopsis

The subject consists of fundamental principles of optics in particular properties of light propagation and its interaction in various media. This subject is divided into the following areas: light propagation characteristics, Geometrical Optics, Ray Optics, Wave Optics and Beam Optics.

Course Outcomes

CO1:
Ability to apply theory into practice

CO2:
Ability to possess enhancement in problem solving skill

CO3:
Ability to strengthen capability in working independently

CO4:
Ability to undertake project planning, design, implementation and management

EMT 445/2
FINAL YEAR PROJECT

Course Synopsis

An exposure to the students in microelectronic/electronic/photonic based research project

Course Outcomes

CO1:
Ability to construct and analyze the optics of media and the applications.

References

EMT 470/3 SEMICONDUCTOR PACKAGING

Course Synopsis

Students will be exposed to Microsystems packaging, the role of packaging in microelectronics, fundamental of IC assembly, general semiconductor process flow, design for reliability, thermal management, sealing and encapsulation, packaging material and processes, and latest packaging technology trend via latest scientific papers. The students will also be exposed to identifying critical packaging parameters and interpreting data of their own designed experiment. Mathematical modeling in packaging are also introduced.

Course Outcomes

CO1:
Ability to understand and explain the semiconductor packaging process flow.

CO2:
Ability to identify the critical parameters in semiconductor packaging process.

CO3:
Ability to discuss the technology trend in semiconductor packaging.

CO4:
Ability to identify, analyze and tackle the common problems that occur in semiconductor packaging industry.

References

Based on project title

EMT 475/3 COMPUTER ORGANIZATION AND ARCHITECTURE

Course Synopsis

This subject will focus on the computer system with various designs of interface techniques, organization and architecture. The syllabus will covered the theory of basic computer system, format of instruction set, memory organization and arithmetic.
Course Outcomes

CO1:
Ability to define, summarize, illustrate and classify the theory of computer system components and the interactions between the components.

CO2:
Ability to define, summarize, illustrate and classify the architecture of a central processing unit.

CO3:
Ability to define, summarize, illustrate and classify the theory of a control unit.

References

Course Outcomes

CO1:
Ability to apply the fundamental concept of Electronic instrumentation.

CO2:
Ability to evaluate an instrument comprising of sensors, data acquisition and embedded system.

CO3:
Ability to demonstrate and use stand-alone and computer-based measurement instruments are covered.

References

EMT 491/3

OPTICAL DESIGN

Course Synopsis
To expose students to optical components and system design. The course covers Basic Optics & Optical System Specifications, Stops, Pupils, and Other Basic Principles, Diffraction, Aberrations, and Image Quality, The Concept of Optical Path Difference, Review of Specific Geometrical Aberrations, Material Selection, Spherical and Aspherical Surfaces, Design Forms & Processes, Gaussian Beam Imagery, Illumination System Design and Tolerancing, Producibility, Evaluation & Manufacturing. Students will be familiar with design softwares.

Course Outcomes

CO1: Ability to relate, apply design and synthesis the basics of imaging and optical system design

CO2: Ability to relate, apply design and synthesis geometrical aberration and material selection

CO3: Ability to relate, apply design, synthesis illumination systems

CO4: Ability to relate, apply and design, synthesis tolerancing, evaluation and manufacturing.

References

EMT 480/3

RELIABILITY & FAILURE ANALYSIS

Course Synopsis
To expose students to optical components and system design. The course covers Basic Optics & Optical System Specifications, Stops, Pupils, and Other Basic Principles, Diffraction, Aberrations, and Image Quality, The Concept of Optical Path Difference, Review of Specific Geometrical Aberrations, Material Selection, Spherical and Aspherical Surfaces, Design Forms & Processes, Gaussian Beam Imagery, Illumination System Design and Tolerancing, Producibility, Evaluation & Manufacturing. Students will be familiar with design softwares.

Course Outcomes

CO1: Ability to apply theory into practice

CO2: Ability to possess enhancement in problem solving skill

CO3: Ability to strengthen capability in working independently

CO4: Ability to undertake project planning, design, implementation and management

References

EMT 446/4

FINAL YEAR PROJECT

Course Synopsis
An exposure to the students in microelectronic/electronic/photonic based research project.

Course Outcomes

CO1: Ability to define, illustrate, explain and solve Reliability-based problems

CO2: Ability to define and explain the failure analysis process flow and the related terms

CO3: Ability to identify, compare, explain and illustrate (where applicable) the different tools and techniques available in FA, its importance and the details operation principle

CO4: Ability to conduct various experiment, investigate, analyze, make a hypothesis and develop solution based on a failure given

References
Based on project title
References

EMT 483/3
SYSTEM ON CHIPS

Course Synopsis

This course will cover system on chip design including design methodology, IP design and platform-based design. This course will also cover various important elements for chip design such as sequential circuit, clock tree, low power design, power distribution and deep submicron interconnect.

Course Outcomes

CO1:
Ability to define, summarize, illustrate classify, design the system-on-chip architecture

CO2:
Ability to define, summarize, illustrate classify, produce results in terms of circuit performance for clock and flip-flop

CO3:
Ability to define, summarize, illustrate classify, develop DSM interconnection and power distribution system.

References

EMT 474/3
OPTOELECTRONIC SYSTEM

Course Synopsis

The students studying this course will develop a basic understanding of the principles and practices of modern optoelectronic device includes fiber optic, semiconductor laser, photodiode and LED. The important functions for applications for these optoelectronic devices will acquire in optoelectronic system such as optical communication and display technology. Practical skills by using software in optical fiber systems and measurement will also be acquired.

Course Outcomes

CO1:
Ability to define, describe and analyze light properties, principle in optical fiber fundamental and optical component and passive device.

CO2:
Ability to explain, solve and evaluate the concept, principles and operation of LEDs principles and operation of lasers concept,

CO3:
Ability to define and analyze laser Diode and Photodetectors

CO4:
Ability to analyze electro optics, construct non linear optics activity, acoustic optics and systems and applications for display

References

3. Amnon Yariv, Pochi Yeh, Photonics: Optical electronics in Modern Communications, 2007
EMT 488/3
DIGITAL SIGNAL PROCESSING

Course Synopsis
This course is a continuation from introduction to signal analysis course that will more emphasize on digital signal analysis. This course will cover the topics related to Discrete Time Signal, Fourier Transform, Sampling process, IIR and FIR digital filter design.

Course Outcomes
CO1:
Ability to define, explain & solve basic principles, analog interface in real time.

CO2:
Ability to define & explain the discrete time signal in both time and frequency domain solve and analyze related problems

CO3:
Ability to define, discuss, solve, analyze & design the problem related to digital IIR filters.

CO4:
Ability to define, discuss, solve, analyze & design the problem related to digital FIR filters.

References

EMT 490/3
MICRO-ELECTRO MECHANICAL-SYSTEMS

Course Synopsis
This course will focus on design and simulation of MEMS devices. The design will include various of analysis types such as structural, electrical and mechanical while the fabrication technology will focus on bulk and surface micromachining. This course will also discuss the application and technology of MEMS packaging in various fields.

Course Outcomes
CO1:
Ability to explain and apply the fundamental concept of MEMS and its technology.

CO2:
Ability to analyze and derive the concept and formula of electrical and mechanical aspects of MEMS Micromachined sensor.

CO3:
Ability to design and analyze MEMS sensors and actuators.

CO4:
Ability to explain and design MEMS packaging and reliability issues.

References

EMT 492/3
QUANTUM ELECTRONICS

Course Synopsis
To educate students on the concepts of modern physics, quantization and postulates of quantum phenomena. The elements of this subject cover Quantum Mechanics, Boundaries and oscillators and Time-Independent Schrodinger Equation. Theories, principles and practical are stressed in this course.

Course Outcomes
CO1:
ability to explain and distinguish the concept and principles of modern physics, quantisation and postulates of quantum phenomena and elements of quantum mechanics

CO2:
Ability to explain, discuss and solve quantum potential structure and photon interactions.

CO3:
Ability to explain, solve and analyse the time-independent Schrodinger equation.

References
References

CAREER OPPORTUNITIES

There are a lot of demand for electronic, microelectronic & photonic engineers that are capable either in the private or government sectors, mainly in the field of designing, fabrication & IC testing. Job prospects & careers for graduates are definitely great.

Among the electronic, microelectronic & photonic specialities & skills that the graduates can undertake as a career are as follows:

- Semiconductor/Microelectronic fabrication
- Full IC Design for digital, analog, mixed signals & RF-IC
- IC Layout Design, System On Chip for digital, analog, mix signal and RF-IC.
- Mask design
- ASICs (Application Specific ICs) design & VLSI (Very Large Scale Integration)
- MEMS (Micro Electro Mechanical Systems) design
- Photonic design
- Design based on Verilog HDL / VHDL (Very High-Speed IC Hardware Description Language)
- Fast-prototype device for IC fabrication
- Device & process simulation
- Failure analysis & testing
- IC Packaging
- IC Testing
- Reverse-Engineering on ICs
- Optical Communications design
Programmes Offered:

- Diploma in Computer Engineering
- Bachelor of Engineering (Hon.) (Computer Engineering)
- Bachelor of Engineering (Hon.) (Communication Engineering)
- Bachelor of Engineering (Hon.) (Computer Network Engineering)
- Master of Science (Computer Engineering)
- Master of Science (Communication Engineering)
- Doctor of Philosophy (Ph.D)

SCHOOL OF COMPUTER AND COMMUNICATION ENGINEERING

Universiti Malaysia Perlis (UniMAP),
Kompleks Pusat Pengajian Seberang Ramai (Blok A),
No. 12 & 14, Jalan Satu,
Taman Seberang Jaya Fasa 3,
02000 Kuala Perlis, Perlis.

Tel : 04-9851654
Fax : 04-9851695
Introduction

The School of Computer and Communication Engineering was established on 30th April 2002. The School of Computer and Communication Engineering adheres to the philosophy that emphasizes the importance of setting up Coppermine integration of knowledge, skills and practices that make the concept a true appreciation of science. The foundations of knowledge combined with good values of life that intellectual culture can be fostered and digested to form a way of life that is dynamic, progressive and civilized.

Based on the philosophy, the curriculum and programmes offered at the School of Computer and Communication Engineering are continually reviewed and updated on an ongoing basis by:

- Taking into consideration the opinion, concluded the study results and feedback from the community, especially in industry.
- Fulfilling the requirements of the professional advisory boards such as the Institute of Engineers Malaysia and Board of Engineers Malaysia.
- Ensuring a balance of theory and practical expertise.
- Ensuring that learning is always at world-class level.
DEAN
ASSOCIATE PROF. DR. R. BADLISHAH BIN AHMAD
E-mail: badli@unimap.edu.my

DEPUTY DEAN
(ACADEMIC AND RESEARCH)
DR. SHAHRUL NIZAM BIN YAAKOB
E-mail: shahrulnizam@unimap.edu.my

DEPUTY DEAN
(STUDENT DEVELOPMENT AND ALUMNII)
DR. MOHD. FAIZAL BIN JAMLOS
E-mail: faizaljamlos@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(COMPUTER ENGINEERING PROGRAMME)
MISS HASNEEZA LIZA BINTI ZAKARIA
E-mail: hasneeza@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(COMMUNICATION ENGINEERING)
DR. MOHAMMAD SHAHRAZEL BIN RAZALLI
E-mail: shahrazel@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(COMPUTER NETWORKING ENGINEERING)
DR. ONG BI LYNN
E-mail: drlynn@unimap.edu.my

CHAIRPERSON OF DIPLOMA PROGRAM
(COMPUTER ENGINEERING PROGRAMME)
MR. MOHD. ZAIZU BIN ILYAS
E-mail: zaizu@unimap.edu.my

COORDINATOR FOR INDUSTRIAL
NETWORKING AND QUALITY MANAGEMENT
MR. ZAHARI BIN AWANG AHMAD
E-mail: zahari@unimap.edu.my

ASISTANT REGISTRAR
MDM. AIZA BINTI JASMI
E-mail: aiza@unimap.edu.my
LECTURERS

Associate Prof. Dr. R. Badlishah bin Ahmad
Ph.D. (Electric and Electronic), University of Strathclyde, UK (1999)
M.Sc. (Optoelectronics), University of Strathclyde, UK (1995)
B.Eng. (Hons) (Electric and Electronic), University of Glasgow, UK (1994)
Diploma Elektrik Perhubungan (DEP), Universiti Teknologi Malaysia (1992)
Tel.: 04-9851741
Fax: 04-9851695
E-mail: badli@unimap.edu.my

Dr. Shahrul Nizam bin Yaakob
Ph.D (Computer System Engineering), University of South Australia (UniSA) (2010)
M.Sc. (Computer Engineering), KUKUM (2006)
Tel.: 04-9851657
E-mail: shahrulnizam@unimap.edu.my

Dr. Mohd. Faizal bin Jamlos
Ph.D (Electrical Engineering), UTM (2011)
M.Eng (Electrical and Electronic Engineering), Adelaide University, Australia (2008)
B.Eng (Hons) (Computer Engineering), KUKUM (2006)
Tel.: 04-9851684
E-mail: faizaljamlos@unimap.edu.my

Miss Hasneeza Liza binti Zakaria
Ijazah Sarjana Muda Teknologi Maklumat, UUM (1998)
Tel.: 04-9851698
E-mail: hasneeza@unimap.edu.my

Dr. Mohammad Shahrazel bin Razalli
Ph.D (Communication and Networking Engineering), UPM (2010)
M.Sc. (Communications and Network Engineering), UPM (2006)
B.Eng (Hons) in Electronic Engineering, The University of Leeds, United Kingdom (1995)
Diploma in Electric Engineering (Electronics), Institut Teknologi Mara (1993)
Tel.: 04-9851680
E-mail: shahrazel@unimap.edu.my

Dr. Ong Bi Lynn
Ph.D (Computer Network), UUM (2008)
B.Eng (Hons) Electrical and Electronic Engineering, UMS (2001)
Tel.: 04-9851778
E-mail: drlynn@unimap.edu.my

Dr. On Bi Lynn
Ph.D (Computer Network), UUM (2008)
B.Eng (Hons) Electrical and Electronic Engineering, UMS (2001)
Tel.: 04-9851778
E-mail: drlynn@unimap.edu.my

Mr. Zahir bin Awang Ahmad
M.Eng. (Electrical - Computer and Microelectronic System), UTM (2009)
B.Sc. in Electrical Engineering, University of Kentucky, Lexington KY, USA (1994)
Tel.: 04-9852672
E-mail: zahari@unimap.edu.my

Prof. Dr. Syed Alwee Aljunid bin Syed Junid
Ph.D. (Communication And Network Engineering), UPM (2005)
B.Eng. (Computer System and Communication), UPM (2001)
Diploma in Electrical Engineering (Power), ITM (1985)
Tel.: 04-9798784/3
E-mail: syedalwee@unimap.edu.my

Associate Prof. Abdul Rahman bin Mohd. Saad
B.Eng., M.Sc.,(USM) Kejuruteraan (Elektrik/Elektronik)
Tel.: 04-9851119/1284
E-mail: abd.rahman@unimap.edu.my

Dr. Mohd. Fareq bin Abd. Malek
Tel.: 04-9851526
E-mail: mfareq@unimap.edu.my

Miss Hasnah binti Ahmad
M.Eng. (Electronic Engineering), Royal Melbourne Institute of Technology (RMIT) University, Australia (2008)
B. Eng. (Hons.) (Electric and Electronic Engineering), USM (2000)
Tel.: 04-9852530
E-mail: hasnahahmad@unimap.edu.my
Mr. Mohamad Suhaizal bin Abu Hassan
Sarjana Sains (Kejuruteraan Rekabentuk Sistem Elektronik), USM (2007)
Tel.: 04-9852466
E-mail: suhaizal@unimap.edu.my

Mrs. Hasliza binti A. Rahim @ Samsuddin
M.Sc. (Kejuruteraan Rekabentuk Sistem Elektronik), USM (2006)
B.Sc. in Electrical Engineering (Modern Communication System), University of Southern California, USA (2003)
Tel.: 04-9854027
Email: haslizarahim@unimap.edu.my

Mrs. Wan Nur Suryani Firuz binti Wan Ariffin
M. Eng. (Computer and Communications), UMKM (2007)
Tel.: 04-9854089
E-mail: suryanifiruz@unimap.edu.my

Mrs. Aznor Hanah binti Abdul Halim
M.Sc. (Electric & Electronics Engineering), USM (2007)
B. Eng. (Hons.) (Electric & Electronics Engineering), USM (2003)
Tel.: 04-9854058
E-mail: aznor@unimap.edu.my

Mrs. Nordiana binti Mohamad Saaid
M.Eng. (Telecommunication Engineering), Royal Melbourne Institute of Technology (RMIT) University, Australia (2007)
B.Eng. (Hons.) (Electronic & Communications Engineering), The University of Leeds, United Kingdom (2003)
International Baccalaureate (IB), MARA College Banting, Selangor (2000)
Tel.: 04-9854093
E-mail: dianams@unimap.edu.my

Mrs. Sahadah binti Ahmad
Advanced Diploma in Electrical (Electronics) Engineering, ITM (1985)
Diploma in Electrical (Electronics) Engineering, ITM (1981)
Tel.: 04-9852605
E-mail: shahadah@unimap.edu.my

Mrs. Sahadah binti Ahmad
Advanced Diploma in Electrical (Electronics) Engineering, ITM (1985)
Diploma in Electrical (Electronics) Engineering, ITM (1981)
Tel.: 04-9852605
E-mail: shahadah@unimap.edu.my

Prof. Dr. Farid Ghani
Ph.D. (Digital & Data Communication Systems), Loughborough University of Technology, UK (1974)
M.Sc. (Digital Signal Processing), Loughborough University of Technology, UK (1972), M.Sc. Eng. (Electrical Measurement & Control Systems), Aligarh Muslim University, India (1967)
B.Sc. Eng. (Electrical Engineering), Aligarh Muslim University, India (1964)
Tel.: 04-9853944
E-mail: faridghani@unimap.edu.my

Mrs. Ismahayati binti Adam
Tel.: 04-9854019
E-mail: ismahayati@unimap.edu.my

Mrs. Norizan binti Mohamed Nawawi
Tel.: 04-9853967
E-mail: norizan@unimap.edu.my

Mrs. Nur Baya binti Mohd. Hashim
B.Eng. (Hons.) (Computer and Communication Engineering), UKM(2006)
Tel.: 04-9854067
E-mail: baya@unimap.edu.my

Mr. Ahmad Nasir bin Che Rosli
M.Sc. (Computer Engineering), UniMAP (2009)
B. Comp. Science (Artificial Intelligence), UM (2001)
Tel.: 04-9853905
E-mail: ahmadnasir@unimap.edu.my

Mr. Muhamad Asmi bin Romli
M.Sc. (Electric and Electronic Engineering), USM (2005)
B.Eng. (Hons.) (Electric and Electronic Engineering), USM (2000)
Tel.: 04-985
E-mail: asmi@unimap.edu.my

Mr. Mohamed Elshaikh Elobaid Said Ahmed
M.Sc in Electrical and Electronics Engineering, UTP (2009)
B.Sc (Hons) in Engineering Technology (Computer Engineering Technology), University of Gezira, Sudan (2004)
Tel.: 04-9854985
E-mail: elshaikh@unimap.edu.my

Mr. Emi Izhanizam bin Azmi
Ijazah sarjana (rekabentuk sistem elektronik), USM (2009)
B.Eng. (Hons.) (Computer Engineering), KUKUM (2006)
Tel.: 04-9853948
E-mail: emi@unimap.edu.my

Mr. Muhamad Sani bin Mustafa
Sarjana (rekabentuk sistem elektronik), USM (2009), B.Eng. (Hons.) (Computer Engineering), KUKUM (2006)
Tel.: 04-9853920
E-mail: sani@unimap.edu.my

Mr. Fairul Afzal bin Ahmad Fuad
M.Sc. (Electric & Electronics), USM (2009)
Tel.: 04-9854150
E-mail: fairul@unimap.edu.my
Mr. Muslim bin Mustapa
Fax: 04-9851695

Mr. Azman bin Muhamad Yusof @ Kamarudin)
M.Sc Kejuruteraan Elektrik & Elektronik (Mikroelektronik), USM (2002)
Tel.: 04-9852550
E-mail: azman@unimap.edu.my

Mr. Md. Mostafijur Rahman
M.Sc (Computer Engineering), UniMAP (2009)
B.Sc (Hons) (Computer Science), National University of Bangladesh (2003)
Tel.: 04-985
E-mail: mostafijur@unimap.edu.my

Mr. Mohd. Shaiful Aziz bin Rashid Ali
M.Sc in Programmable Digital Systems, University of Brighton, UK (2009)
B.Eng (Hons.) (Computer Engineering), UniMAP (2007)
Tel.: 04-9854251
E-mail: shaifulaziz@unimap.edu.my

Mr. Che Muhammad Nor bin Che Isa
M.Eng Telecommunications, University of South Australia (2009)
Ijazah B.Eng. (Kepujian) (Kejuruteraan Perhubungan), UniMAP (2007)
Diploma in Electric Engineering (Networking), UTM (2003)
Tel.: 04-985
E-mail: cmnor@unimap.edu.my

Mr. Rosemizi bin Abd. Rahim (cuti belajar Ph.D Separuh Masa, UniMAP)
Sarjana Sains (Kejuruteraan Rekabentuk Sistem Elektronik), USM (2004)
Diploma Kejuruteraan Elektrik (Kuasa), ITM (1998)
Tel.: 04-9854132
E-mail: rosemizi@unimap.edu.my

Mr. Phak Len a/l Eh Kan (cuti belajar Ph.D Separuh Masa, UniMAP)
Sarjana Sains (Teknologi Maklumat), UUM (2001)
Ijazah B.Eng. Elektrik (Elektronik), UTM (1997)
Diploma Kejuruteraan Elektrik (Perhubungan), UTM (1991)
Tel.: 04-9852610
E-mail: phaklen@unimap.edu.my

Dr. Abid Yahya
Ph.D (Wireless & Mobile Communication Engineering), USM (2010)
M.Sc by Research (Wireless & Mobile Communication Engineering), USM (2007)
B.Engg (Electrical & Electronics Engineering), UET Pakistan (2001)
Tel.: 04-985
E-mail: abidyahya@unimap.edu.my

Dr. Hilal Adnan Fadhil
Ph.D (Communication Engineering), UniMAP (2010)
M.Sc in Electronic and Communications Engineering / Modern Communications Engineering, Al-Nahrain University, Iraq (2005)
B.Sc in Electronic and Communications Engineering, Al-Nahrain University, Iraq (2002)
Tel.: 04-9852639
E-mail: hilaladnan@unimap.edu.my

Miss Nur Farhan binti Kahar
M.Sc. (Computer Engineering), UniMAP (2010)
B.Eng. (Hons.) (Electronic Engineering), USM (2006)
Tel.: 04-985
E-mail: nurfarhan@unimap.edu.my

Dr. Abdul Hafizh bin Ismail
Ph.D (Wireless Communication Engineering), Ibaraki University, Japan (2011)
M.Eng. Electrical and Electronic (Telecommunication) Engineering, UTB (2005)
B.Eng. (Media and Telecommunication Engineering) Ibaraki University, Japan (2003)
Tel.: 04-9852697
E-mail: abdulhafizh@unimap.edu.my

Mr. Fazrul Faiz bin Zakaria
M.Research in Microelectronic Architecture, Network and Communication System, TELECOM Bretagne (France) (2010)
B.Eng. (Hons.) Communication Engineering, UniMAP (2007)
Diploma in Electronic Engineering (Communication), UTB (2004)
Tel.: 04-9852570
E-mail: ffaiz@unimap.edu.my

Akbah A. Khalifa
B.Sc Electrical Engineering, Iraq (1994)
Tel.: 04-985
E-mail: akbah@unimap.edu.my
TEACHING ENGINEERS

Mrs. Dayang Khadijah binti Hamzah
B.Eng. (Hons.) (Electrical), UiTM (2002)
Diploma in Electrical Engineering (Instrumentation), UiTM (1999)
Tel.: 04-9852721
E-mail: h_dayang@unimap.edu.my

Mr. Mohammad Nazri bin Md. Noor
Tel.: 04-9798016
E-mail: nazri@unimap.edu.my

Mrs. Hazila binti Othman
B. Eng. (Hons) (Electrical), UiTM (2002)
Diploma in Electrical Engineering (Electronics), UiTM (1999)
Tel.: 04-9852623
E-mail: hazila@unimap.edu.my

Mr. Mohd. Fisol bin Osman
Tel.: 04-9798016
E-mail: mohd.fisol@unimap.edu.my

Mr. Mohamad Rizal bin Abdul Rejab
M.Sc. (Information and Communication Technology), UUM (2010)
B.Eng. (Hons.) (Electronic Engineering), USM (2004)
Tel.: 04-9855153/5946
E-mail: m.rizal@unimap.edu.my

Mrs. Shariffah Zarihan binti Syed Zaharim Helmi
B.Eng. (Hons.) Electronics Majoring in Microwave and Communications, Multimedia University (MMU) (2003)
Tel.: 04-9852721
E-mail: zarihan@unimap.edu.my

Mr. Abdul Hallis bin Abdul Aziz
Tel.: 04-9798931
E-mail: abdulhalis@unimap.edu.my

Mr. Mat Nor Mohamad bin Ismail
Tel.: 04-9853337
E-mail: matnor@unimap.edu.my

Mr. Mohd. Fairuz bin Muhamad Fadzil
Tel.: 04-9855153
E-mail: mohdfairuz@unimap.edu.my

Mrs. Nazatul Syima binti Saad
B.Eng. (Hons.) (Electric) (Telekomunikasi), KUITTHO (2006)
Sijil Kejuruteraan Elektrik (Kuasa), Politeknik Sultan Abdul Halim Mu’adzam Shah (POLIMAS), Kedah (2001)
Tel.: 04-9855201
E-mail: nazatul@unimap.edu.my

Mrs. Siti Nor Diana binti Ismail
Pegawai Latihan Vokasional (J41)
Ijazah B.Eng. (Kepujian) (Kejuruteraan Komputer), KUKUM (2006)
Tel.: 04-9855064
Fax: 04-9851695
E-mail: sitinordiana@unimap.edu.my

Mrs. Fazlina binti Farid
B.Eng. (Hons.), (Communication) UIAM (2008)
Tel.: 04-9855201
E-mail: fazlinafarid@unimap.edu.my

Mrs. Noor Fazreen binti Bakar
Ijazah Sarjana Muda (Kepujian) Kejuruteraan Elektrik (Elektronik), UiTM (2008)
Diploma Kejuruteraan Elektrik (Elektronik), UiTM (2004)
Tel.: 04-9855064
E-mail: fazreen@unimap.edu.my

Mr. Khairil Syahmi bin Musa
B.Eng. Electric (Hons.) (Communication), KUITTHO (2006)
Tel.: 04-9855230
E-mail: syahmi@unimap.edu.my

Mrs. Roziana binti Mohammed Ariff
B.Eng. (Hons.) (Networking Engineering), UniMAP (2008)
Tel.: 04-9853624
E-mail: roziana@unimap.edu.my

STUDY LEAVE

Mrs. Norsuhaida binti Ahmad
B.Eng. Electric (Electronics), UTM (2001)
E-mail: norsuhaida@unimap.edu.my

Mr. Suhizaz bin Sudin
Ijazah Sarjana Muda Teknologi Maklumat (Hons), UUM (1998)
E-mail: suhizaz@unimap.edu.my

Mrs. Rafikha Aliana binti A. Raof
B.Eng. (Hons.) Electronics majoring in Computer, MMU (2002)
E-mail: rafikha@unimap.edu.my
Mrs. Junita binti Mohd Nordin
M.Sc. in Radio Frequency Communication Systems, University of Southampton, United Kingdom (2005)
Bachelor of Electrical and Electronics Engineering (Hons.), UNITEN (2002)
E-mail: junita@unimap.edu.my

Mrs. Sabarina binti Ismail
M.Eng. (Electric), UTM (2002)
B.Eng. (Hons.) (Computer and Networking), USM (1990)
E-mail: sabarina@unimap.edu.my

Mrs. Nurulisma binti Hj. Ismail
Bachelor of Information Technology (Hons.), UUM (2000)
E-mail: nurul@unimap.edu.my

Ir. Anuar bin Mat Safar
P.Eng., BEM (2005)
M.Sc. (Information Technology), UUM (2002)
E-mail: anuar@unimap.edu.my

Mr. Mohd. Najmuddin bin Mohd. Hassan
M.Sc. (IT), Universiti Teknologi MARA (2004)
B.Eng. (Communication), Universiti Teknologi Malaysia (2000)
Diploma Electric (Electronic), Universiti Teknologi MARA (1994)
E-mail: najmuddin@unimap.edu.my

Mr. Azremi bin Abdullah Al-Hadi
B.Eng. (Hons.) (Electrical and Electronic Engineering), USM (2002)
E-mail: azremi@unimap.edu.my

Mrs. Yasmin binti Mohd. Yacob
B.Sc. Computer Science, Univ. of Michigan, USA (1996)
E-mail: yasmin.yacob@unimap.edu.my
URL: http://publicweb.unimap.edu.my/~yasmin

Mr. Muhammad Imran bin Ahmad
E-mail: m.imran@unimap.edu.my

Mrs. Salina binti Mohd Asi
Sarjana Sains (Sains Komputer – Kejuruteraan Perisian Masa Nyata), UTM (1999)
Sarjana Muda Sains Komputer (Kepintaran Buatan), UTM (1996)
Diploma in Science Computer, UTM (1994)
E-mail: salina@unimap.edu.my

Mr. Salina binti Mohd Asi
Sarjana Sains (Sains Komputer – Kejuruteraan Perisian Masa Nyata), UTM (1999)
Sarjana Muda Sains Komputer (Kepintaran Buatan), UTM (1996)
Diploma in Science Computer, UTM (1994)
E-mail: salina@unimap.edu.my

Mr. Zahereel Ishwar bin Abdul Khalib
Sarjana Sains (Sains Komputer – Kejuruteraan Perisian Masa Nyata), UTM (2005)
B.Sc. in Computer Engineering, California State University, Sacramento, USA (2000)
E-mail: zahereel@unimap.edu.my

Mr. Soh Ping Jack
E-mail: pjsoh@unimap.edu.my

Mr. Amir Razif Arief bin Jamil Abdullah
B.Sc. in Electrical Engineering, Norwich University, USA (1996)
E-mail: amirrazif@unimap.edu.my

Mr. Said Amirul Anwar bin Ab. Hamid @ Ab. Majid
M.Sc. Electronic Engineering, (Birmingham)
B.Eng. (USM)
E-mail: said@unimap.edu.my

Mrs. Rusnida binti Romli
Sarjana Sains Teknologi Maklumat (Penyelidikan:Realiti Maya), UUM (2003)
Ijazah Sarjana Muda Teknologi Maklumat (Sains Komputer), UNIMAS (2000)
E-mail: rusnida@unimap.edu.my

Mr. Zulkifli bin Husin
(cuti belajar Ph.D, UniMAP)
B.Eng. in Mechatronic, UTM (1999)
Diploma in Electronic, UTM (1996)
E-mail: zulhusin@unimap.edu.my

Mrs. Rohani binti S Mohamed Farook
(cuti belajar Ph.D, UniMAP)
Sarjana Sains Teknologi Maklumat (Penyelidikan:Kepintaran Buatan), UUM (2006)
Ijazah Sarjana Muda Teknologi Maklumat dengan kepujian, UUM (1998)
E-mail: rohani@unimap.edu.my

Mr. Mohd. Alif Hasmani bin Abd. Ghani
(cuti belajar PhD, UniMAP)
Sarjana Sains (Sains Komputer), USM (2006)
Sarjana Muda Sains Komputer (Hons), USM (2001)
Email: alifhasmani@unimap.edu.my

Mrs. ‘Aini Syuhada binti Md Zain
M.Eng. (Communication and Computer), UKM (2007)
B.Eng. (Computer and Information) (Hons.), UIAM (2005)
E-mail: ainisyuhada@unimap.edu.my
TECHNICIANS

Mr. Noorzaki bin Zainal
BTEC Higher National Diploma (HND)
Electrical/Electronic Engineering, The
British Malaysian Institute, Kuala Lumpur
(1999)
Sijil Kemahiran Kajisawat Instrumen
Elektronik, IKM Sungai Petani (1996)
Tel.: 04-9852315
Fax: 04-9851695
E-mail: norzaki@unimap.edu.my

Mr. Megat Norizan bin Megat Shafiee
Diploma Kejuruteraan Elektrik,
POLIMAS (2009)
Sijil Kejuruteraan Elektronik (Kawalan),
Politeknik Shah Alam (2001)
Tel.: 04-9852315
Fax: 04-9851695
E-mail: megat@unimap.edu.my

Mrs. Siti Zauyah binti Othman
Diploma Kejuruteraan Elektronik (Komputer),
Politeknik Seberang Perai (PSP) (2006)
Sijil Kejuruteraan Elektronik (Komputer),
Politeknik Shah Alam (2002)
Tel.: 04-9798021
Fax: 04-9851695
E-mail: sitizauyah@unimap.edu.my

Mr. Basri bin Hamid
Diploma Kejuruteraan Elektrik (Elektronik
Kuasa dan Kawalan), Politeknik Sultan
Abdul Halim Mu’adzam Shah (POLIMAS),
Kedah (2006)
Sijil Kejuruteraan Elektronik (Kawalan),
Politeknik Ungku Omar (PUO), Ipoh (2001)
Tel.: 04-9851940/3337
Fax: 04-9851695
E-mail: basri@unimap.edu.my

Mr. Mohamad Haris bin Uzir
Diploma Kejuruteran Elektrik (Elektronik
Kuasa dan Kawalan), Politeknik Sultan
Abdul Halim Mu’adzam Shah (POLIMAS),
Kedah (2006)
Sijil Kejuruteran Elektrik (Kawasan),
POLIMAS, Jitra (2002)
Tel.: 04-9798034
Fax: 04-9851695
E-mail: haris@unimap.edu.my

Mrs. Suraya binti Harun
Diploma Kejuruteran Elektronik
(Perhubungan), POLIMAS (2006)
Sijil Kejuruteran Elektronik
(Perhubungan), Politeknik Shah Alam
(2002)
Tel.: 04-9853334/3337
Fax: 04-9851695
E-mail: suraya_harun@unimap.edu.my

Mr. Che Mohamad bin Che Hashim
Sijil Kejuruteran Elektronik
(Perhubungan), POLIMAS (1995)
Tel.: 04-985
Fax: 04-9851695
E-mail: mohamad@unimap.edu.my

Mr. Mohammad Dzahir bin Zainun
Sijil Kejuruteran Elektronik (Komputer),
POLIMAS (2004)
Tel.: 04-9852842
Fax: 04-9851695
E-mail: dzahir@unimap.edu.my

Mr. Mohd. Aniff bin Mohammad
Certificate in Electric and Electronic,
POLIMAS (2004)
Tel.: 04-9852826
Fax: 04-9851695
E-mail: aniff@unimap.edu.my

Mr. Azizul Hafifi bin Abd. Rahman
Certificate in Domestic Electrical,
Kolej Komuniti Arau (2004)
Tel.: 04-985
Fax: 04-9851695
E-mail: hafifi@unimap.edu.my

Mr. Izdiharuddin bin Ismail
Sijil Teknologi Maklumat, POLIMAS (2004)
Tel.: 04-9852315
Fax: 04-9851695
E-mail: izdiharuddin@unimap.edu.my

Mrs. Assyafinar binti Asri
Sijil Sistem Komputer Dan Sokongan,
Kolej Komuniti Arau (2008)
Tel.: 04-9852827
Fax: 04-9851695
E-mail: assyafinar@unimap.edu.my

Miss Nor Hasmah binti Halip
Sijil Sistem Komputer Dan Sokongan,
Kolej Komuniti Arau (2008)
Tel.: 04-9852828
Fax: 04-9851695
E-mail: norhasmah@unimap.edu.my

Miss Suzanna binti Salwi
Sijil Sistem Komputer Dan Sokongan,
Kolej Komuniti Arau (2008)
Tel.: 04-985
Fax: 04-9851695
E-mail: susanna@unimap.edu.my

Mr. Shahril bin Rosidi
Diploma Kejuruteran Elektrik, Politeknik
Sultan Abdul Halim Mu’adzam Shah
(POLIMAS), Kedah (2009)
Sijil Kejuruteran Elektronik
(Perhubungan), POLIMAS (2002)
Tel.: 04-985
Fax: 04-9851695
E-mail: shahrilrosidi@unimap.edu.my

Mrs. Aiza binti Jasmi
Assistant Registrar
B.B.A (Hons.) Finance, UKM (2002)
Tel.: 04-9851690
Fax: 04-9851695
E-mail: aiza@unimap.edu.my
Mrs. Rusmiza binti Abdullah
Administrative Assistant (Office Secretary)
Diploma Pengurusan dan Teknologi
Pejabat, UITM Cawangan Perak, Seri Iskandar (2002)
Tel.: 04-9851654
Fax: 04-9851695
E-mail: rusmiza@unimap.edu.my

Mrs. Yusnita binti Radin Yusoff
Administrative Assistant
(Clerical/Operational)
Tel.: 04-9851697
Fax: 04-9851695
E-mail: yusnita@unimap.edu.my

Mrs. Farah Dieva binti Ab. Rahim
Administrative Assistant
(Clerical/Operational)
Tel.: 04-9852705/1654
Fax: 04-9851695
E-mail: farah@unimap.edu.my

Mrs. Nur Hazwanie binti Mokhtar
Administrative Assistant
(Clerical/Operational)
Tel.: 04-9851697
Fax: 04-9851695
E-mail: hazwanie@unimap.edu.my

Mr. Roshaizan bin Darus
General Office Assistant
Tel.: 04-9852705
Fax: 04-9851695
E-mail: roshaizandarus@unimap.edu.my
COMPUTER ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objective 1
Graduates who are leaders in the field of computer engineering or chosen field as demonstrated through career advancement

Programme Objective 2
Graduates who are members and contribute to professional society

Programme Objective 3
Graduates pursue continuing education opportunities

Programme Objective 4
Graduates make contributions through research and development

Programme Objective 5
Graduates who are entrepreneur

PROGRAM OUTCOMES-PO

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>Ability to have professional personality, ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>Recognition of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>Ability to acquire of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS) (COMPUTER ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT102/3 Basic Electronic Engineering</td>
<td>EKT112/4 Principles of Measurement and Instrumentation</td>
<td>EKT242/3 Electromagnetic Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECT111/3 Engineering Skills</td>
<td>EKT214/4 Analog Electronic Circuits II</td>
<td>EKT334/4 Algorithm and Data Structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT121/3 Engineering Mathematics I</td>
<td>EQT103/3 Engineering Mathematics II</td>
<td>EQT272/3 Probability and Statistic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQT212/2 Skills and Technology in Communication</td>
<td>EQT221/3 Discrete Mathematics and Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUWXXX/1 Co-curriculum</td>
<td>EUW410/2 University Malay Language</td>
<td>EUW212/2 University English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUW322/2 Thinking Skills</td>
<td>EUW323/2 Islam & Asia Civilisation (TITAS)</td>
<td></td>
</tr>
</tbody>
</table>

Total Units for Graduation 131 + 4 (Industrial Training) = 135

Open Elective: Any 4th Year subjects offered by the school or other schools.

Elective I & II: EKT 355 Principle of Digital Signal Processing, EKT466 Artificial Intelligence, EKT 422 Parallel Computing, EKT 426 Database Management System, and Open

COMMUNICATION ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objective 1
Graduates are leaders in the field of communication engineering or chosen field as demonstrated through career advancement

Programme Objective 2
Graduates who are members and contribute to professional society

Programme Objective 3
Graduates pursue continuing education opportunities

Programme Objective 4
Graduates make contributions through research and development

Programme Objective 5
Graduates who are entrepreneur

PROGRAM OUTCOMES-PO

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>Ability to have professional personality, ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>Recognition of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>Ability to acquire of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(COMMUNICATION ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>ENGINEERING CORE (97)</td>
<td>EKT120/4 Computer Programming</td>
<td>EKT124/3 Digital Electronics I</td>
<td>EKT204/4 Analog Electronic Circuits</td>
</tr>
<tr>
<td></td>
<td>EKT102/3 Basic Electronic Engineering</td>
<td>EKT112/4 Principles of Measurement and Instrumentation</td>
<td>EKT242/3 Electromagnetic Theory</td>
<td>EKT341/4 Antenna and Propagation</td>
</tr>
<tr>
<td>YEAR II</td>
<td>EKT222/4</td>
<td>EQT101/3 Engineering Mathematics I</td>
<td>EQT102/3 Engineering Mathematics II</td>
<td>EQT272/3 Probability and Statistic</td>
</tr>
<tr>
<td></td>
<td>Digital Electronics I</td>
<td>EQT221/3 Discrete Mathematics and Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR III</td>
<td>EKT232/4</td>
<td>EKT231/3</td>
<td>EKT354/4</td>
<td>EKT355/4</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Theory</td>
<td>Analog Electronic Circuits II</td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
</tr>
<tr>
<td></td>
<td>KT354/4</td>
<td>KT355/4</td>
<td>KT356/4</td>
<td>KT357/4</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Theory</td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
</tr>
<tr>
<td>YEAR IV</td>
<td>EKT214/4</td>
<td>KT353/3</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>Analog Electronic Circuits II</td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td>YEAR V</td>
<td>EKT352/4</td>
<td>KT353/3</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td>YEAR VI</td>
<td>EKT352/4</td>
<td>KT353/3</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td>YEAR VII</td>
<td>EKT352/4</td>
<td>KT353/3</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td>YEAR VIII</td>
<td>EKT352/4</td>
<td>KT353/3</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
<tr>
<td></td>
<td>KT353/3</td>
<td>Principles of Digital Signal Processing</td>
<td>KT354/4</td>
<td>KT355/4</td>
</tr>
</tbody>
</table>

Open Elective: Any 4th year subjects offered by the school or other schools.

COMPUTER NETWORK ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objective 1
Graduates are leaders in the field of computer network engineering or chosen field as demonstrated through career advancement

Programme Objective 2
Graduates who are members and contribute to professional society

Programme Objective 3
Graduates pursue continuing education opportunities

Programme Objective 4
Graduates make contributions through research and development

Programme Objective 5
Graduates who are entrepreneur

PROGRAM OUTCOMES-PO

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>Ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>Ability to understand the social, cultural, global and environment responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>Ability to understanding entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>Ability to have professional personality, ethical responsibilities and commitment to the community.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO) FOR UniMAP</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>Recognition of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>Ability to acquire of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(COMPUTER NETWORK ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT120/4 Computer Programming</td>
<td>EKT124/3 Digital Electronics I</td>
<td>EKT204/4 Analog Electronic Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT214/4 Analog Electronic Circuits</td>
<td>EKT211/3 Engineering Skills</td>
<td>EKT334/4 Algorithm and Data Structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQT101/3 Engineering Mathematics I</td>
<td>EQT102/3 Engineering Mathematics II</td>
<td>EQT272/3 Probability and Statistic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQT211/3 Engineering Skills</td>
<td>EQT221/3 Discrete Mathematics and Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUT122/2 Skills and Technology in Communication</td>
<td>EUWXXX/1 Co-curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td>EUW212/2 University English</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUW282/2 Thinking Skills</td>
<td>EUW233/2 Islam & Asia Civilisation (TITAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUW224/2 Engineering Entrepreneurship</td>
<td>EUW235/2 Ethnic Relation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUW223/2 Islam & Asia Civilisation (TITAS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUWXXX/2 Option Subjects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units for Graduation 131 + 4 (Industrial Training) = 135

Open Elective : Any 4th Year subjects offered by the school or other schools.
Elective I & II : EKT 353 Principles of Digital Signal Processing, EKT466 Artificial Intelligence, EKT 422 Parallel Computing, EKT 426 Database Management System,
And Open : EKT 345 Microwave Engineering, EKT 460 Image Processing, EKT428 Mobile Computing, EKT465 Optical Communication Systems,
Elective : EKT 450 Network Security, EKT454 Wireless Network & Communication
EKT 101/3
ELECTRIC CIRCUIT THEORY

Course Synopsis

Basically this introductory circuit course can be divided into two parts. Part I, consisting of chapter 1 through 4, is devoted to DC circuits. It covers fundamental laws and theorems, circuit analytical techniques, passive and active elements. Part 2, consisting of chapter 5 through 8, deals with AC circuits. It introduces phasors, sinusoidal steady state analysis, using previous analytical techniques under sinusoidal steady state excitation, RLC circuits, AC power calculations and power factor correction, rms values and three-phase balanced systems.

References

EKT 102/3
BASIC ELECTRONIC ENGINEERING

Course Synopsis

This course will expose the students to the basic electronic devices. The topic covered including introduction to semiconductor: Atomic Structures, Semiconductors, Conductors, and Insulators, Covalent Bonds, Conduction in Semiconductor, N-Type and P-Type Semiconductor, the Diode, Biasing the Diode, Voltage-Current characteristic of a Diode, Diode Models, Testing a Diode.

Students will also expose to the diode application. The topic covered including Half-Wave Rectifiers, Full-Wave Rectifiers, Power Supply Filters and Regulations, Diode Limiting and Clamping Circuits, Voltage Multipliers, The Diode Data Sheet, Troubleshooting, Special Purpose Diodes: Zener Diodes, Zener Diode Applications, Varactor Diodes, Optical Diodes, Other Types of Diodes and Troubleshooting.

Bipolar Junction Transistors (BJT’s) and various types of FET are also covered in this course. The topics including Transistor Structure, Basic Transistor Operation, Transistor Characteristic and parameters. The Transistor as an Amplifier, The Transistor as a Switch, Transistor Packages and Terminal Identification, Troubleshooting, Transistor Bias Circuits: The DC Operating Points, Voltage Divider Bias, Other Bias Methods. Field-Effect Transistor (FETs), The JFET, JFET Characteristic & parameters, JFET Biasing, The MOSFET, MOSFET

References

EKT 103/3
ELECTRICAL ENGINEERING

Course Synopsis

This subject will expose the students to the basic electrical machines, electronic instrumentation and measurement and power quality. For the electrical machines and machine control, the topics covered include the Power Transformers, DC machines and AC machines. General concepts and basic principle of operation for each electrical machine are covered includes the characteristics and performance analysis. For the instrumentation part, the topics covered include general DC and AC meters, DC and AC bridges and sensors and transducers. Constructions and principles of operation for each part are covered in this part. In addition to that students are exposed to the principle of power quality.
References

EKT 112/4
PRINCIPLES OF MEASUREMENT AND INSTRUMENTATION

Course Synopsis

This course covers Theory and Constructional details of Analog instruments. In this course, sources of errors in Energy Meter and their compensation are included together with different types of Power Factor Meters. This course also discusses the use of Cathode ray Oscilloscope and the importance of their components.

References

EKT 120/4
COMPUTER PROGRAMMING

Course Synopsis

One of the aspects of a good engineer is to have the capability of integrating the hardware and the software, thus an electronic engineer should be competence in programming. This course introduces basic programming using high level language (C language). The main objective of this course is to prepare the students with the ability of problem solving with programming, to be able to do analysis with the programming tools such as organization chart, IPO chart, flowchart and pseudo code and then to implement them by developing C program.

References

EKT 124/3
DIGITAL ELECTRONICS I

Course Synopsis

Introduction and discussion of the fundamental of digital circuit design and analysis. The lecture and laboratory exercise covers the following topics: Boolean Algebra, Numbering System, Basic Logic Gates, Combinational Circuit Design, Timing Diagram, Bi-Stable Memory Device and Sequential Circuit Design.

References

EKT 204/4
ANALOG ELECTRICAL CIRCUITS

Course Synopsis
This course exposes the student the basic knowledge in analog electronic. The exposure encompasses amplifier design based on bipolar and field effect transistors, for single and multi stage, power amplifier, frequency response analysis of amplifiers and also exposure to a few specialized device such as Shockley diodes, SCS, Diac, Triac, SCR, Optotransistor, LASC8R and Optocouplers. Emphasis is placed on basic design aspects and applications. The course has been designed to provide basic analog electronic skills covering theories and practicals.

References

EKT 214/4
ANALOG ELECTRONIC CIRCUITS II

Course Synopsis
This course offers the students an exposure to the operational amplifier: Operation, differential amplifier, common-mode, parameters, basic op-amp, practical op-amp circuits, op-amp datasheet, applications of op-amp and frequency response and compensation; feedback circuits: Concepts and feedback, types of feedback connection, practical feedback circuit, feedback amplifier; Oscillator: basic operating principles of an oscillator, phase shift, Wien bridge, crystal oscillator, uni-junction; action filters: basic filter, filter response characteristics, low-pass filter, high-pass filter, band-pass filter, band-stop filter, frequency response measurement, design of filter, Butterworth, chebchev and Elliptic; Voltage regulators: Basic series and basic shunt regulators, basic switching regulator, IC regulators and applications.

References

EKT21/4
DIGITAL ELECTRONICS II

Course Synopsis
This course exposes the students to the Combinational Logic System Design, Sequential System, Memory and Programmable Logic Devices, Register Transfer and Datapath, Sequencing and Control as well as Computer Organisation.

References

EKT221/4
MICROPROCESSOR SYSTEM

Course Synopsis
The aim of this course is to study the Intel 8085 microprocessor architecture and relate that knowledge to the design of microprocessor based systems. This includes the design technique for interfacing memory, input and output for the systems.
The study of 8085 instruction set and various software development tools are also emphasized as the knowledge are needed in the design of the microprocessor-based systems.

References

EKT 232/3 SIGNALS AND SYSTEMS

Course Synopsis

The course aims to introduce the concept of signals and systems analysis, the continuous signal and discrete signal functions and types of signal transformation. It begins with familiarization with different types of functions and relate them with convolution. To understand the Fourier series, Laplace-transform and Z-transform and familiarize with the properties involved, the transform and the inverse method. In general how the signals and systems are analysed in the time and frequency domain.

References

EKT 242/3 ELECTROMAGNETIC THEORY

Course Synopsis

The purpose of this course is to learn the basic theory and analysis of electromagnetic. Student should be able to understand the basic concept of electrostatics, magnetostatics and their effects. Student should also understand the theory and application of transmission line.

References

EKT 303/4 PRINCIPLES OF COMPUTER ARCHITECTURE

Course Synopsis

This subject will focus on the computer system with various design of interface techniques, organisation and architecture. The syllabus will covered the theory of basic computer system, format of instruction set, memory organization and arithmetic logic unit as well as certain issues of designing such as bus structure, parallel processing, pipelining and memory management. The student are required to design a simple CPU during a Lab session by using Quartus II software provided by Altera. The lab session will complement the theories given in lectures. FPGA trainer board will be used as a design platform in the lab.

References

EKT 322/4
EMBEDDED SYSTEM DESIGN

Course Synopsis

The aim of this course is to study the concept and requirement of embedded system. This includes the characteristic of embedded system, hardware and software development: single chip microcontroller and programming technique in assembly language and C, basic multitasking concept, developing an embedded system application.

References

EKT 333/3
MODERN OPERATING SYSTEM

Course Synopsis

This course introduces the fundamental of operating systems. It also covers theoretical and practical issues underlying operating system design and implementation. The topics include inter process communication, process scheduling, deadlock, memory management, virtual memory and file management system. Formal principles are illustrated with examples and case studies of modern operating system.

References

EKT 334/4
ALGORITHM AND DATA STRUCTURES

Course Synopsis

This course introduces data types, algorithm and data structures. The topics of array, pointers, structure and union in C are revisited. Then, the linear data structure i.e. stack, queue linked list and non linear data structure i.e. tree and graph are discussed in depth. In addition, sorting and searching algorithm are also included.

References

EKT 335/3
PRINCIPLES OF COMPUTER NETWORK

Course Synopsis
This course exposes students to the principle and the knowledge of computer networks. Computer network cover so the aspects of local area network and wide area network and it is expanding rigourously. Thus, in this course, it is focused on the fundamental concept and theories, applications and advantages of computer networks. Related technologies such as Local Area Network, Wide Area Network and techniques used in data transmission as well as latest technologies use are introduced. Practical exercises such as design, install and testing of a simple computer internetworking which improve understanding and develop skills on networking are integrated in laboratories exercises.

References

EKT 341/4
ANTENNA AND PROPAGATION

Course Synopsis
The purpose of this course is to introduce the fundamental principle of the functions, types and characteristics of antenna. Student should be able to analyze the characteristics of wave and waveguide. Student should also have ability to explain the characteristics of radio wave propagation.

References

EKT 345/4
MICROWAVE ENGINEERING

Course Synopsis
This course aims to expose students with basic concept of parameters that are being used in microwave communication network. Analysis the device characteristics for microwave. To explain the importance and applications of microwave communication system. Additionally, the students are introduced how to design microwave’s filters and amplifiers.

References
EKT 355/4
ADVANCED COMPUTER NETWORK

Course Synopsis

Comprehensive overview of communications software and hardware involved in wide area networks and their relationship to local area networks are introduced. The course is designed for computer networking majors. The students are able to identify the major components of the WANs (Asynchronous Transfer Mode, Integrated Services Digital Network, Synchronous Optical Network, etc.) and the flow of data between the bridges and routers.

References

EKT 314/4
INSTRUMENTATION ELECTRONICS

Course Synopsis

Introduce students to the basic of electronic instrumentations, sensors and transducers that can be applied to the modern instrumentation systems; expose students to the elements and principles of data acquisition system with appropriate applications. Practical involves the use of virtual instrumentation software, development of transducer circuits and signal conditioning circuits, interfacing to the microprocessor and the execution of DAQ system.

References

EKT 336/3

COMPUTER NETWORK

Course Synopsis

This course exposes students with the kind and knowledge of computer networks. Computer network technologies cover so many aspects and it is expanding rigourously. Therefore this course focuses on the fundamental concept and theories, applications and advantages of computer networks. Related technologies such as Local Area Network, Wide Area Network and techniques use in data transmission as well as latest technologies use are introduced. Practical exercises such as design, install and testing of a simple computer internetworking which improve understanding and develop skills on networking are integrated in laboratories exercises.

References

EKT 353/3

PRINCIPLES OF DIGITAL SIGNAL PROCESSING

Course Synopsis

To introduce the applications and review of signal and systems including z-transform. Digital structures, discrete Fourier transform, mathematical analysis of discrete time signal and systems, FFT, IIR filters and their designs, FIR filters and their designs, finite word length effect, simple applications.

References

EKT 357/3

DIGITAL COMMUNICATION ENGINEERING

Course Synopsis

This subject will cover all the principles and concepts of digital communications including signal analysis and transmission through channel, pulse modulations, speech signal digitization, base band transmission, digital modulation techniques and performance, spread spectrum communications. In addition, the basic telephony system also will be introduced to relate the students with the real application.

References

EKT 421/3

SOFTWARE ENGINEERING

Course Synopsis

The course shall introduce principles and technique in software engineering, management integration concept, method or process and software metrics. In addition, this course exposes presentation and discussion on specific software engineering method, documentation and tools. It also covers object based need analysis and modeling. This course explains about relevant method to verify and validate prototype developed.
EKT 424/4 REAL TIME SYSTEMS

Course Synopsis

The course shall discuss concepts relevant to real time system and concept which differentiates ordinary operating system and real time operating system. Focus and in depth coverage shall be on techniques on developing real time system application which incorporates concurrent and synchronize process on a target embedded board which runs POSIX compliant open source operating system.

References

EKT 433/4 NETWORK MODELING

Course Synopsis

This course introduces the principle and technique in modeling and analyzing the computer network using software and discrete event simulator technique. The simulation technique is a powerful tool to analyze the network without the possibilities to destroy the real network. The students are able to understand the concept of network model, develop and analyze the computer network using this simulation technique.

References

EKT 434/3 NETWORK PROGRAMMING

Course Synopsis

The aims of this course are to introduce the students of the programming in computer network and get familiar with the mechanism of protocols that consists in the network. The skills to programme the network protocols to works properly to transfer data from the sender to the receiver are exposed.
The students are able to analyze, test, develop and design the protocols that are setting up a network.

References

EKT440/4
TELECOMMUNICATION SWITCHING AND NETWORKS

Course Synopsis

This course is to discuss the technology applied in communication network, emphasized on application of concept architecture and layer, signal transmission technique, switching system and switching circuit network. It also discussed on multiplexing as well as to give an exposure of network application and basic network programming.

References

EKT441/3
MOBILE COMMUNICATION

Course Synopsis

The course aims to provide knowledge in mobile communications, especially different system characteristics and their effect on wireless network performance. The mobility puts high requirements on the communication system and these requirements together with possible solutions are an essential part of the course. The course focuses on

- wireless network performance and trade-offs
- cellular network planning and modeling
- radio resource management (RRM) and mobility management (MM)
- Wireless wide area network (WWAN) architectures.

References

CAREER OPPORTUNITIES

Employment and career prospects of graduates upon graduation are very encouraging. The graduates can work in the industry in the following areas:

- Product design and digital control system based on microcontroller systems.
- Design equipment components for optical telecommunication systems, wired and wireless.
- Research and Development of electronic-based Industry, University, MIMOS, SIRIM,

Careers Can Be Pursued:

- Electronic Engineers
- Product Engineer
- Telecommunications Engineer
- Design Engineer
- System Engineer
- Network Engineer
- Research & Development Engineer
- Executive Engineer
- Tech Entrepreneurs
Programmes Offered:

- Diploma in Engineering (Mechatronic)
- Bachelor of Engineering (Hons) (Mechatronic Engineering)
- Bachelor of Engineering (Hons) (Mechanical Engineering)
- Bachelor of Engineering (Hons) (Biomedical Electronic Engineering)
- Master of Science (Mechatronic Engineering)
- Master of Science (Mechanical Engineering)
- Master of Science (Biomedical Electronic Engineering)
- Doctor of Philosophy (Ph.D)

SCHOOL OF MECHATRONIC ENGINEERING

Universiti Malaysia Perlis (UniMAP),
Ulu Pauh Campus,
02600 Arau, Perlis.

Tel : 04-988-5166
Fax : 04-988-5167
School of Mechatronic Engineering offers three exciting and challenging study programmes using the up-to-date equipments and teaching and learning approaches. The curriculum of each programme offered at School of Mechatronic Engineering are designed to produce graduate professionals who have the analytical skills and are able to work in all fields of engineering and related industries. Learning environment will be more enjoyable and competitive with the mix of local and international students.

Mechatronic Engineering Programme
The programme is a multi disciplinary field that is synergistic of electrical, mechanical, electronics, control and computer engineering disciplines which enables its graduates having good analytical and design knowledge of integrated mechatronic systems to cater for the needs in the automation industry.

Mechanical Engineering Programme
The programme emphasizes on the design and synthesis of mechanical components and systems. Mechanical engineers are usually involved in research and development, design and manufacturing, engine and thermal energy systems and also machinery. Mechanical engineering graduates are highly flexible and could work in almost every industrial engineering sector.

Biomedical Electronic Engineering Programme
The programme combines knowledge of electrical, electronic and mechanical engineering, as well as medical science such as anatomy, physiology and radiology. Combination of the knowledge in these areas enables engineers to cater for the needs in the biomedical industry.

Introduction

School of Mechatronic Engineering was established to meet the growing needs of professionals, particularly in the field of electromechanical, mechanical and biomedical electronics engineering. This demand is clearly stated in the report of the Industrial Master Plan (Laporan Pelan Induk Perindustrian). In line with this aspiration, the curriculum has been designed with a balanced emphasis between theory and practical. Teaching and learning are conducted by various approaches, in which the theoretical knowledge is reinforced with other activities using state of the art equipment. Thus, UniMAP students are greatly benefited in line with the latest technological development.
DEAN
ASSOCIATE PROFESSOR DR. ABDUL HAMID BIN ADOM
Email: abdhamid@unimap.edu.my

DEPUTY DEAN
(ACADEMIC AND RESEARCH)
DR. WAN KHAIRUNIZAM BIN WAN AHMAD
Email: khairunizam@unimap.edu.my

DEPUTY DEAN
(STUDENT DEVELOPMENT AND ALUMNI)
DR. SHAHRIMAN BIN ABU BAKAR
Email: shahriman@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(BIOMEDICAL ELECTRONICS ENGINEERING)
MR. MOHD HANAFI BIN MAT SOM
Email: mhanafi@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(MECHATRONICS ENGINEERING)
DR. SITI KHADJAH BINTI ZA'ABA
Email: khadijah@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(MECHANICAL ENGINEERING)
MR. MOHD SOFIAN BIN MOHAMMAD ROSBI
Email: sofian@unimap.edu.my

CHAIRPERSON OF DIPLOMA PROGRAM
(MECHATRONICS ENGINEERING)
MR. MUHAMAD KHAIRUL BIN ALI HASSAN
Email: khairulhassan@unimap.edu.my

COORDINATOR FOR
INDUSTRIAL NETWORKING AND
QUALITY MANAGEMENT
MR. ABDUL HALIM BIN ISMAIL
Email: ihalim@unimap.edu.my

ASISTANT REGISTRAR
MR. HASRUL NIZAM BIN HALIM
Email: hasrul@unimap.edu.my
LECTURERS

Professor Dr. Sazali bin Yaacob
Ph.D in Control Engineering (Sheffield),
M.Sc. in System Engineering (Surrey)
B.Eng. (Hons) in Electrical Engineering
(UM)
C.Eng, MIEEE
Tel: 04-9885300
Email: s.yaacob@unimap.edu.my

Professor Dr. Ali Yeon bin Md Shakaff
Ph.D (Electronic Engineering), Newcastle-Upon-Tyne
B.Sc (Electronic & Electronic Engineering),
Newcastle-Upon-Tyne
Tel: 04-9798931
Email: aliyeon@unimap.edu.my

Professor Dr. Kyaw Sein
Post Doctoral Fellow, Hannover University
Dr.Eng(Process Eng.) Kyushu University
M.Eng(Process Eng). Tokyo University
B.Eng.(Mechanical) YTU Yangon
Tel: 04-9885273
Email: kyawsein@unimap.edu.my

Professor Dr. Ramachandran Nagarajan
Ph.D (Adaptive Control), University of Madras
M.Tech (Control Engineering), IIT Kanpur
B.Eng (Hons) (Electrical & Electronics),
University of Madras
Tel: 04-9885213
Email: nagarajan@unimap.edu.my

Professor Dr. Mohd Yusoff bin Mashor
Ph.D (Control System), Sheffield University
M.Sc (Control & Information Technology),
Sheffield University
B.Eng (Hons) (Control & Computer Engineering), Poly. of Central London
Tel: 04 9885288
Email: yusoff@unimap.edu.my

Professor Dr. Raymond Boon Whee Heng
Phd, B.Eng. (Sheffield, UK)
Email: heng@unimap.edu.my

Associate Professor Dr. Abdul Hamid bin Adom
Ph.D (Neural Networks), LJMU
M.Sc (Modern Control & Instrumentation Systems), LJMU
B.Eng (Hons) (Electronic Systems Engineering), LJMU
Tel: 04-9885165
Fax: 04-9885167
Email: abdhamid@unimap.edu.my

Associate Professor Dr. Kenneth A/L Sundaraj
Ph.D (Image, Vision, Robotics.), INPG, France
M.Sc (Image, Vision, Robotics), INPG, France
B.Eng (Electrical), NTU
Tel: 04-9885258
Email: kenneth@unimap.edu.my

Associate Professor Dr. Paulraj Murugesan Pandiyappan
Ph.D (Computer Science & Engineering),
Bharathiar University
M.Eng (Computer Science & Engineering),
Bharathiar University
B.Eng (Electrical & Electronics), Madras University
Tel: 04-9885257
Email: paul@unimap.edu.my

Associate Professor Dr. Ye Htut@ Mohammad Iqbal bin Omar
M.Sc (Medicine) Edith Cowan University
Post Graduate Diploma (Reproductive Medicine), UPM
M.B.B.S, Yangon
Tel: 04-9852403/04-9885321
Email: iqbalomar@unimap.edu.my

Associate Professor Dr Hazry bin Desa
Dr. Eng in Electrical and Electronics (Oita, Japan)
M.Eng in Mechanical (Tokushima, Japan)
Tel: 04-9798311
Email: hazry@unimap.edu.my

Associate Professor Dr. Ghulam Abdul Quadir
Ph.D (Fluid Mechanics), Indian Institute of Science
M.Sc (Mechanical – Heat Power), Aligarh Muslim University,
B.Sc (Mechanical), Bhagalpur University
Tel: 04-9885166
Email: gaquadir@unimap.edu.my

Associate Professor Dr. Ir. Merdang Sembiring
Ph.D (Energy), Universite de Poitiers
DEA (Thermal), Universite de Poitiers
Diploma (Solar Energy), Universite de Perpignan
Tel: 04-9885274
Email: merdang@unimap.edu.my

Dr. Haftirman
Dr.Eng (Material), Fukui University
M.Eng (Industry Engineering), Fukui University
B.Eng (Mechanical), USU
Tel: 04-9885301
Email: haftirman@unimap.edu.my

Dr. Hariharan Muthusamy
Ph.D (Mechatronic Engineering), UniMAP
M.Eng(Applied Electronics), Anna University, India
B.Eng (Electrical and Electronics Engineering), Bharathiar University, India.
Tel: 04-9885237
Email: hari@unimap.edu.my
Dr. M. Murugappan
Ph.D (Mechatronics), UniMAP
M.Eng (Electronics), Anna University, Chennai, India
B.Eng (Electrical & Electronics). Madras University, Chennai, India
Tel: 04-9798300
Email: murugappan@unimap.edu.my

Dr. Marwan Affandi
Ph.D (Mechanical), UTM
M.Eng (Rational Use of Energy), AIT
B.Sc (Mechanical), USU
Tel: 04-9885234
Email: marwan@unimap.edu.my

Dr. Wan Khairunizam bin Wan Ahmad
Ph.D (Signal Sensing), Kagawa University
B.Eng. Electrical and Electronic Engineering, Yamaguchi University
Tel: 04-9885256
Email: khairunizam@unimap.edu.my

Dr. Shahriman bin Abu Bakar
Ph.D (Mechanical), Mie University
M.Eng (Mechanical), Mie University
B. Eng (Mechanical), Mie University
Tel: 04-9885166
Email: shahriman@unimap.edu.my

Dr. Siti Khadijah binti Za’aba
Ph.D (Medical Engineering), Yamanashi University
M.Eng (Electrical and Electronic), Yamanashi University
B.Eng (Electrical and Electronic), Yamanashi University
Tel: 04-9885251
Email: khadijiah@unimap.edu.my

Dr. Cheng Ee Meng
Ph.D (Microwave), UPM
M.Sc (Wave Propagation), UPM
B.Sc (Hons) (Instrumentation Science), UPM
Tel: 04-9885252
Email: emcheng@unimap.edu.my

Dr. Mohd Afendi bin Rojan
Ph.D (Mechanics @ Energy) University of Tsukuba, M.Eng (Mechanics @ Energy) University of Tsukuba, B. Eng (systems) University of Tsukuba
Tel: 04-9885162
Email: afendirojan@unimap.edu.my

Dr. Shafiriza Nisha Bin Basah
Ph.D (Mechatronics) Swinburne University
M.Sc (Mechatronics) Imperial College London
Email: shafriza@unimap.edu.my

Mr. Abu Hassan bin Abdullah
M.Sc. Mechatronics (DemMonford, UK)
B.Eng (Elect, Electronic & System)(UKM)
Email: abuhassan@unimap.edu.my

Mrs. Saufiah binti Abdul Rahim
M.Sc. in Electrical and Electronic Engineering (USM)
B.Eng.(Hons) in Electrical and Electronic Engineering (USM)
Tel: 04-9885239
Email: saufiah@unimap.edu.my

Mr. Zol Bahri bin Hj. Razali
M.A (Computer Based Learning), USM
B.Eng (Mech/Aero), UTM
Tel: 04-9885212
Email: zolbahri@unimap.edu.my

Mr. Abdul Halim bin Ismail
M.Sc (Control & Automations), UPM
B.Eng (Hons) (Electrical & Electronics), UPM
Tel: 04-9885275
Email: ihalim@unimap.edu.my

Mr. Ahmmad Nasrul bin Norali
M.Sc. (Biomedical) (New South Wales)
B.Eng. (Telecommunication), UM
Tel: 04-9798672
Email: ahmadnasrul@unimap.edu.my

Mr. Bukhari bin Ilias
M.Sc (Mechatronic), UniMAP
BEng (Mechatronics), Middlesex University
Tel: 04-9885166
Email: bukhari@unimap.edu.my

Mr. Anas Abdul bin Rahman
M.Eng (Mechanical Engineering), UKM
B.Sc (Mechanical Engineering), Iowa State University
Tel: 04-9885231
Email: anasrahman@unimap.edu.my

Miss Azian Azamimi binti Abdullah
M.Eng. (Electrical and Electronic), Tokushima University
B.Eng. (Electrical and Electronic), Tokushima University
Tel: 04-9885268
Email: azamimi@unimap.edu.my

Mr. Fahisal bin Abdullah
M.Eng. (Mechatronic), UTM
B.Eng. (Mechatronics), UniMAP
Diploma (Power), UTM
Tel: 04-9885211
Email: fahisal@unimap.edu.my

Mr. Hamzah bin Sakeran
MBiomedE, University of New South Wales
B.B.eng (Biomedical engineering), UM
Tel: 04 – 9885235
Email: hamzahsakeran@unimap.edu.my

Mrs.Hasimah binti Ali
M.Sc (Mechatronics), UIAM
B.Eng (Mechatronics)(Hons), UIAM
Tel: 04-9885205
Email: hashimah@unimap.edu.my

Mr. Imaduddin Helmi bin Wan Nordin
M.sc (Mechanical - Manufacturing), Tottori University, B.Eng (Hons) (Mechanical), Tottori University
Tel: 04-9885160
Email: imaduddin@unimap.edu.my
Mr. Ishak bin Ibrahim
M.Sc (Mechanical), Mie University
B.Eng, (Mechanical), Mie University
Tel: 04-9885219
Email: ishakibrahim@unimap.edu.my

Mr. Moh. Hafis bin Sulaiman
M.Eng (Mechanical), UTM
B.Eng (Mechanical), UTM
Tel: 04-9885253
Email: hafissulaiman@unimap.edu.my

Mr. Moh. Ridzuan bin Mohd Jamir
M.Eng (Mechanical), UTM
B.Eng (Mechanical), UTM
Tel: 04-9885253
Email: ridzuanjamir@unimap.edu.my

Mr. Muhamad Khairul bin Ali Hassan
M.Sc (Mechatronic Eng), UniMAP
B.Eng (Hons) (Mechatronics), USM
Tel: 04-9885306
Email: khairulhassan@unimap.edu.my

Mr. Muhamad Safwan bin Muhamad Azmi
M.Sc (Robotics), Mie University
B.Eng, (Mechanical), Mie University
Email: safwanazmi@unimap.edu.my

Mrs. Norazian binti Abd. Razak
M.Eng (Biomedical), UM
B.B.Eng (Biomedical Engineering), UM
Tel: 04-9885166
Email: norazianrazak@unimap.edu.my

Miss Normahira binti Mamat @ Mohamad Nor
M.Eng (Biomedical), UM
B.B.Eng (Biomedical Engineering), UM
Tel: 04-9885294
Email: normahira@unimap.edu.my

Miss Nur Farahiyah bin Mohammad
M.Eng (Biomedical Engineering), Melbourne University
B.B.Eng (Biomedical Engineering), UMS
Tel: 04-9885261
Email: farahiyah@unimap.edu.my

Mr. Hassrizal bin Hassan Basri
M.Eng (Mechatronic Eng), UTM
B.Eng (Mechatronic Eng), UTM
Email: hassrizal@unimap.edu.my
SENIOR TEACHING ENGINEER

Mr. Mohamad Hanif bin Abd Hamid
B. Eng (Hons) (Electrical – Mechatronics), UTM
Tel: 04-9885328
Email: hanif@unimap.edu.my

TEACHING ENGINEERS

Mrs. Adilah binti Hashim
B. Eng (Biomedical), UM
Tel: 04-9885303
Email: adilah@unimap.edu.my

Mr. Erdy Sulino bin Mohd Muslim Tan
B.Eng (Mechatronic Engineering), UniMAP
Tel: 04-9885166
Email: erdysulino@unimap.edu.my

Miss Farah Hanan binti Mohd Faudzi
B.Eng (Mechatronic Engineering), UniMAP
Tel: 04-9885259
Email: farahh@unimap.edu.my

Mr. Ismail Ishaq bin Ibrahim
B.Eng (Mechatronic Engineering), UniMAP
Tel: 04-9885257
Email: ismailishaq@unimap.edu.my

Miss Maizatul Nurul Bariah binti Ahmad
B.Eng (Mechatronic Engineering), UniMAP
Tel: 04-9885282
Email: maizatulnb@unimap.edu.my

Mr. Mohd Anuar bin Mat
MSc (Mechanical – Heat Transfer), USM
BEng (Mechanical), USM
Diploma (Agriculture / Mechanical), UPM
Tel: 04 – 9885166
Email: m.anuar@unimap.edu.my

Mr. Mohd Asrul bin Md Saad
B. Eng(Material), USM
Tel: 04 – 9885166
E-mail: asrulsaad@unimap.edu.my

Mr. Mohd Khairul Faizi bin Abd Rahman
B. Eng (Mechanical Industrial), UTM
Tel: 04-9885179
Email: mkhairulfaizi@unimap.edu.my

Mr. Mohd. Shahril bin Shariff
B. Eng (Mechanical), UTM
Tel: 04-9885166
Email: mohdshahril@unimap.edu.my

Mr. Nor Shaifudin bin Abdul Hamid
B. Eng (Hons) (Mechatronics), IIUM
Tel: 04-9885240
Email: norshaifudin@unimap.edu.my

Mrs. Norazila binti Shoib
B. Eng (Electrical & Electronic), UTM
Tel: 04-9885303
Email: azilashoib@unimap.edu.my

Mrs. Norlaili binti Saad
B. Eng in Electrical (Control & Instrumentation), UTM
Tel: 04 – 9885166
Email: norlaili@unimap.edu.my

Mrs. Rahaton Azirah binti Ramli
BEng (Manufacturing Engineering With Management), USM
Tel: 04-9885329
Email: rahaton@unimap.edu.my

Mrs. Robiyanti binti Abdullah
B. Eng (Biomedical Engineering), UM
Tel: 04-9885166
Email: robiyanti@unimap.edu.my

Mr. Roejhan bin Md Kawi
B.Eng (Mechatronic Engineering), UniMAP
Tel: 04-9885166
Email: roejhan@unimap.edu.my

Mrs. Sharifah Nurul Husna bin Syed Hanapi
B.Eng (Mechatronics Engineering),IIUM
Tel: 04-9885314
Email: nurulhusna@unimap.edu.my

Mr. Sofi bin Yahya
B.Eng (Electrical Engineering),UTM
Tel: 04-9798547
Email: sofi@unimap.edu.my

Mr. Wan Mohd Nooriman bin Wan Yahya
BEng (Electrical Engineering - Mechatronics), UTM
Tel: 04-9885226
Email: nooriman@unimap.edu.my

Mr. Wan Shahrizal bin Wan Nadhari
BEng (Mechanical), UTM
Tel: 04-9885226
Email: w.shahrizal@unimap.edu.my

Mr. Mohd Azri bin Abd Aziz
B. Eng (Mechatronics), UIA
Tel: 04-9885209
Email: azrialaziz@unimap.edu.my
STUDY LEAVE

Mr. Ahmad Faizal bin Salleh
M.Eng (Mechanical), UTM
B.Eng (Mechanical), Nagoya University
Email: ahmadfaizal@unimap.edu.my

Mr. Azizul bin Mohamad
M.Eng (Mechanical Eng), Curtin University
B.Eng (Hons) (Mechanical Eng), UNITEK
Email: azizul@unimap.edu.my

Mrs. Hafizawati binti Zakaria
M.Sc (Mechanical), UTM
B.Eng (Mechanical), UNITEK
Email: hafizawati@unimap.edu.my

Mr. Handy bin Ali Munir
M.Eng (Elect. Eng), UTM
B.Sc (Electrical & Electronic), UTM
Email: handy@unimap.edu.my

Mr. Mohd Hafiz bin Fazalul Rahiman
M. Eng (Electrical), UTM
B. Eng (Hons) (Electrical – Control & Instrumentation), UTM
Email: hafiz@unimap.edu.my

Mr. Mohd Noor Arib bin Md Rejab
M.Sc (Mechanical), UPM
B.Eng (Mechanical), UPM
Diploma (Mechanical), Politeknik Sultan

Abdul Halim Mu’adzam Shah
Cert. (Mechanical), Politeknik Sultan
Abdul Halim Mu’adzam Shah
Email: mnarib@unimap.edu.my

Mr. Mohd Shukry bin Abdul Majid
M.Sc. (Eng) Mechanical System, Liverpool University
B.Eng (Hons) Mechanical Eng,UMIST
Email: Shukry@unimap.edu.my

Mr. Muhajir bin Ab. Rahim
M.Sc (Control Systems), Sheffield University
B.Eng (Electrical & Electronics), UNITEK
Email: muhajir@unimap.edu.my

Mr. Muhammad Izham bin Ismail
M. Eng (Mechanical), Kyoto Institute of Technology
B. Eng (Mechanical), Kyoto Institute of Technology
Email: Izham@unimap.edu.my

Mr. Nashrul Fazli bin Mohd Nasir
M.Sc (Biomedical Eng.), Keele University
B.B.Eng (Biomedical Engineering), UM
Email: nasrul@unimap.edu.my

Miss Nazahah binti Mustafa
M.Eng (Electrical Eng), USM
B.Eng (Hons) (Electronic Eng), USM
Email: nazahah@unimap.edu.my

Mr. Norasmadi bin Abdul Rahim
M.Sc (Electrical), UiTM
B.Eng (Electrical), UiTM
Diploma (Electrical), UiTM
Email: norasmadi@unimap.edu.my

Mr. Ruslizam bin Daud
M.Eng (Mechanical), UTM
B.Eng (Mechanical), UKM
Email: ruslizam@unimap.edu.my

Mr. Shah Fenner Khan bin Mohamad Khan
M.Sc (Mech.Eng), Curtin University
B.Eng (Hons.) (Mech.Eng), UNITEK
Email: Shahnaser@unimap.edu.my

Mrs. Shazmin Aniza binti Abdul Shukor
M.Eng. (Mechatronics), KUITTHO – FH Colonge German
B.Eng. (Mechatronics), UIA
Email: shazmin@unimap.edu.my

Mr. Ahmad Syayuthi bin Abdul Rahman
M.Eng (Mechanical – Adv. Manu. Tech.), UTM
B.Eng (Material), USM
Diploma (Education – Technical Mgt.), MPT
Email: syayuthi@unimap.edu.my

Mr. Fathinul Syahir bin Ahmad Saad
M.Sc (Electrical & Electronics), USM
B.Sc Hons (Computational & Electronic Physics), UM
Email: fathinus@unimap.edu.my

Mrs. Fauziah binti Mat
M.Eng (Mechanical), UKM
B.Eng (Mechanical), UKM
Email: fauziah@unimap.edu.my

Mr. Khairul Salleh bin Basaruddin
M.Eng (Mechanical), UTM
B.Eng (Mechanical), UTM
Email: khsalleh@unimap.edu.my

Mr. Md Tasyrif bin Abdul Rahman
MEng (Mechanical Engineering), Gunma University
BEng (Mechanical Engineering), Gunma University
Email: tasyrif@unimap.edu.my

Mr. Mohd Arinal bin Abd. Halim
M.Eng (Electrical), Kyushu University
B.Eng (Electrical), Kyushu University
Email: arinal@unimap.edu.my

Mr. Muhammad Juhairi bin Aziz Safar
M.Eng (Bionics), Tokyo University of Technology
B.Eng (Mechatronic), Tokyo University of Technology
Email: juhairi@unimap.edu.my

Mrs. Saidatul Ardeenawatie binti Awang
M. MedPhy (Medical Physics), UM
B.B.Eng (Biomedical Engineering), UM
Email: saidatul@unimap.edu.my
Mr. Zulkarnay bin Zakaria
MEng (Electric-Electronic & Telecommunication), UTM
B.Eng (Hons) Electrical & Electronic Eng, USM
Email: zulkarny@unimap.edu.my

TECHNICAL ASSISTANT

Mr. Zalizam Mulyadi bin Ghazali
Diploma in Mechanical Engineering (Manufacturing) POLIMAS
Certificate in Mechanical Engineering (Manufacturing) POLIMAS
Tel: 04 - 9885166
Email: zalizam@unimap.edu.my

TECHNICIANS

Mr. Anuar bin Ahmad
Certificate in Mechanical Engineering (General) POLIMAS
Tel: 04 – 9798851
Email: anuarahmad@unimap.edu.my

Mr. Bazli bin Bahadon
Certificate in Communications Electronic Engineering
Tel: 04 - 9885166
Email: bazli@unimap.edu.my

Mr. Mohammad Abid bin Abdul Rahman
Certificate in Mechanical Engineering (PTSS)
Tel: 04-9885166
Email: abid@unimap.edu.my

Mr. Mohammad Firdaus bin Rejab
Certificate in Power Electrical Engineering (POLIMAS)
Tel: 04 - 9885304
Email: firdausrejab@unimap.edu.my

Mr. Mohd Al Haffiz bin Saad
Certificate in Computer Engineering (PSP)

Mr. Mohd Amri bin Zainol Abidin
Certificate in Mechanical Engineering
Tel: 04-9885166
Email: amrizainol@unimap.edu.my

Mr. Mohd Nadzrin bin Mohammad Radzi
Certificate in Mechanical Engineering (PTSS)
Tel: 04-9885166
Email: mohdnadzrin@unimap.edu.my

Mr. Mohd Nizam bin Hashim
Diploma in Mechanical Engineering (Manufacturing) POLIMAS
Certificate in Mechanical Engineering (Manufacturing) POLIMAS
Tel: 04-9885166
Email: nizam@unimap.edu.my

Mr. Mohd Razif bin Omar
Certificate in Mechanical Engineering (General) POLIMAS
Tel: 04 – 9885166
Email: mohdrazif@unimap.edu.my

Mr. Mohd Rimi Rafeek bin Abd Latif
Diploma in Mechanical Engineering (Manufacturing) POLIMAS
Certificate in Mechanical Engineering (General) POLIMAS
Tel: 04-9885166
Email: rimi@unimap.edu.my

Mrs. Zanhassida binti Md.isa
Certificate in Mechanical Engineering (General Machinery) - Politeknik Port Dickson.
General Machining Certificate – Jitra Industrial Training Institute
Tel: 04-9885329
Email: zanhassida@kukum.edu.my

CRAFTSMAN

Mr. Muhamad Ikbal bin Azudin
Diploma Vocational Training (Foundry Technology) CIast,
Malaysian Skills Certificate (MLVK) Level 3 Pattern Maker,
Malaysian Skills Certificate (MLVK) Tahap 2 Foundry Technology
Tel: 04-9885175
Email: ikbal@unimap.edu.my

ADMINISTRATIVE STAFFS

Mr. Hasrul Nizam bin Halim
Assistance Registrar
Tel: 04-9885170
Email: hasrul@unimap.edu.my
Mrs. Zuraida binti Mansor
Administrative Assistant (Office Secretary)
Tel : 04-9885166
Email: zuraida@unimap.edu.my

Mrs. Saliza binti Khalid
Administrative Assistant (Finance)
Tel : 04-9885166
Email: saliza@unimap.edu.my

Mr. Husniashraf bin Hussain
Administrative Assistant (Student Affairs & Asset)
Tel : 04-9885168
Email: husniashraf@unimap.edu.my

Mr. Mustaza bin Mansor
Administrative Assistant (Academic)
Tel : 04-9885168
Email: mustaza@unimap.edu.my

Mr. Basri Abu bin Bakar
General Assistant
Tel : 04-9885168
Email: basri@unimap.edu.my
PROGRAMME OBJECTIVES (PEO) (MECHATRONIC ENGINEERING)

Programme Objectives 1
Graduates who effectively demonstrate engineering knowledge and entrepreneurial skills by providing practical solutions.

Programme Objectives 2
Graduates who effectively demonstrate professionalism in multi-disciplinary engineering environment, leadership quality and teamwork.

Programme Objectives 3
Graduates who make contributions to knowledge and establish best engineering practice through research and development.

Programme Objectives 4
Graduates who demonstrate an ethical commitment to the community and the profession through involvement with professional organizations and society.

Programme Objectives 5
Graduates who engage in life-long learning as demonstrated through career advancement.

PROGRAMME OUTCOMES (PO)

PO 01 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Mechatronic Engineering discipline.
PO 02 Ability to identify, formulate and solve engineering problems.
PO 03 Ability to design a system, component or process to meet desired needs.
PO 04 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 05 Ability to use techniques, skills and modern engineering tools necessary for engineering practices so as to be easily adaptable to industrial needs.
PO 06 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.
PO 07 In-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 08 Understanding of professional and ethical responsibilities and commitment to the community.
PO 09 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 A recognition of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles.
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS) (MECHATRONIC ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>I</td>
<td>ENT 161/4 Electrical Circuits</td>
<td>ENT 162/4 Analogue Electronics</td>
<td>ENT 281/3 Signals & Systems</td>
<td>ENT 256/4 Machine Design</td>
</tr>
<tr>
<td></td>
<td>ECT111/3 Engineering Skills</td>
<td>ENT 142/3 Engineering Dynamics</td>
<td>ENT 286/3 Instrumentation & Measurements</td>
<td>ENT 288/3 Microprocessors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENT 289/3 Drives and Power Electronics</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>ENT189/3 Computer Programming</td>
<td>EQT 102/3 Engineering Mathematics II</td>
<td>EQT241/3 Numerical Methods & Vector Calculus</td>
<td>EQT271/3 Engineering Statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQT 101/3 Engineering Mathematics I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EUW 410/2 University Malay Language</td>
<td>EUW 233/2 Islamic & Asian Civilisations</td>
<td>EUW 322/2 Thinking Skills</td>
<td>EUW XXX/2 Option</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW XXX/1 Co-Curriculum</td>
<td>EUW 212/2 University English</td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Units for Graduation 135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives:
- Elective I: ENT491/3 Robotic Control / ENT493/3 Advanced Control Systems
- Elective II:ENT478/3 Mobile Robotics / ENT497/3 Artificial Intelligence in Engineering
- Elective III:ENT474/3 Intelligent Mechatronic Systems / ENT499/3 Digital Signal Processing & Applications
PROGRAMME OBJECTIVES (PEO)(MECHANICAL ENGINEERING)

Programme Objectives 1
Graduates who effectively demonstrate engineering knowledge and entrepreneurial skills by providing practical solutions.

Programme Objectives 2
Graduates who effectively demonstrate professionalism in multi-disciplinary engineering environment, leadership quality and teamwork.

Programme Objectives 3
Graduates who make contributions to knowledge and establish best engineering practice through research and development.

Programme Objectives 4
Graduates who demonstrate an ethical commitment to the community and the profession through involvement with professional organizations and society.

Programme Objectives 5
Graduates who engage in life-long learning as demonstrated through career advancement.

PROGRAM OUTCOMES-PO

PO 01 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Mechanical Engineering discipline.
PO 02 Ability to identify, formulate and solve engineering problems.
PO 03 Ability to design a system, component or process to meet desired needs.
PO 04 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 05 Ability to use techniques, skills and modern engineering tools necessary for engineering practices so as to be easily adaptable to industrial needs.
PO 06 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.
PO 07 In-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 08 Understanding of professional and ethical responsibilities and commitment to the community.
PO 09 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 A recognition of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENT141/3 Engineering Statics</td>
<td>ENT142/3 Engineering Dynamics</td>
<td>ENT241/3 Fluid Mechanics I</td>
<td>ENT247/3 Fluid Mechanics II</td>
</tr>
<tr>
<td>ENGINEERING CORE</td>
<td>ENT150/3 Engineering Graphic & Computer Aided Drafting</td>
<td>ENT143/3 Thermo dynamics I</td>
<td>ENT243/3 Thermodynamics II</td>
<td>ENT245/4 Product Design Development</td>
</tr>
<tr>
<td>(98)</td>
<td>ENT145/3 Materials Engineering</td>
<td>ENT144/2 Machining Skills</td>
<td>ENT242/3 Solid Mechanics I</td>
<td>ENT246/3 Solid Mechanics II</td>
</tr>
<tr>
<td></td>
<td>ENT188/3 Electrical Technology</td>
<td>ENT286/3 Instrumentations & Measurements</td>
<td>ENT244/3 Manufacturing Processes</td>
<td>ENT343/3 Principles of Heat Transfer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective I : ENT461/3 Renewable Energy / ENT463/3 Elasticity / ENT465/3 Rapid Engineering</td>
</tr>
<tr>
<td>Elective II : ENT462/3 Turbomachinery / ENT464/3 Fracture Mechanics / ENT466/3 Design Optimization</td>
</tr>
<tr>
<td>Elective III :ENT431/3 Refrigeration & Air Conditioning / ENT433/3 Plasticity / ENT435/3 Robotics</td>
</tr>
<tr>
<td>Elective IV :ENT432/3 Energy Conversion / ENT434/3 Impact Mechanics / ENT436/3 Computer Aided Manufacturing</td>
</tr>
</tbody>
</table>

Total Units for Graduation 135
PROGRAMME OBJECTIVES (PEO)(BIOMEDICAL ELECTRONIC ENGINEERING)

Programme Objectives 1
Graduates who effectively demonstrate engineering knowledge and entrepreneurial skills by providing practical solutions.

Programme Objectives 2
Graduates who effectively demonstrate professionalism in multi-disciplinary engineering environment, leadership quality and teamwork.

Programme Objectives 3
Graduates who make contributions to knowledge and establish best engineering practice through research and development.

Programme Objectives 4
Graduates who demonstrate an ethical commitment to the community and the profession through involvement with professional organizations and society.

Programme Objectives 5
Graduates who engage in life-long learning as demonstrated through career advancement.

PROGRAMME OUTCOMES (PO)

PO 01 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Biomedical Engineering discipline.
PO 02 Ability to identify, formulate and solve engineering problems.
PO 03 Ability to design a system, component or process to meet desired needs.
PO 04 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 05 Ability to use techniques, skills and modern engineering tools necessary for engineering practices so as to be easily adaptable to industrial needs.
PO 06 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.
PO 07 In-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 08 Understanding of professional and ethical responsibilities and commitment to the community.
PO 09 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 A recognition of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(BIOMEDICAL ELECTRONIC ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>ENGINEERING CORE</td>
<td></td>
<td>ENT114/3 Circuit Theory</td>
<td>ENT115/3 Analogue Electronics I</td>
<td>ENT117/3 Engineering Mechanics</td>
</tr>
<tr>
<td>(92)</td>
<td></td>
<td>ECT111/3 Engineering Skills</td>
<td>ENT116/3 Analogue Electronics II</td>
<td>ENT222/3 Electromagnetic Field Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENT319/3 Thermofluids</td>
<td>ENT320/3 Mechanics of Materials</td>
<td>ENT318/3 Artificial Organs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(28)</td>
<td></td>
<td>EKT120/4 Computer Programming</td>
<td>ENT111/4 Anatomy & Physiology</td>
<td>ERT106/3 Biochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED UNIVERSITY</td>
<td></td>
<td>EUW 233/2 Islamic & Asian Civilizations</td>
<td>EUW410/2 University Malay Language</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
</tr>
<tr>
<td>(15)</td>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>EUW235/2 Ethnic Relations</td>
<td>EUW212/2 University English</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total Units for Graduation: 135</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective I (Medical Computing): ENT420/4 Biological System Modeling, ENT421/4 Medical Image Processing, ENT422/4 E-Health & Telemedicine, ENT423/4 Artificial Intelligent Systems, ENT424/4 Forces, Fields & Flows in Biomedical Engineering
Elective II (Medical Instrumentation): ENT425/4 Advanced Bioinstrumentation, ENT426/4 Computed Tomography & Applications, ENT427/4 Clinical Engineering, ENT428/4 Medical Robotics & Automation, ENT429/4 Biosensors
COURSE SYLLABUS

ENT 111/4
ANATOMY & PHYSIOLOGY

Course Synopsis

An introductory course to human anatomy and physiology, the students will be exposed to the basic knowledge on cell and tissues, skin and appendages, circulatory and cardiovascular system, the respiratory system, nervous system, special senses, the musculoskeletal system, digestive system and metabolism, lymphatic and immune system, the endocrine system, urinary system and also the reproductive system. At the end of the course, the students are expected to master the anatomical and physiological aspects of the human body and able to apply basic engineering principles in solving health problems.

Course Outcomes

CO1:
Ability to discuss anatomical and physiological function of various systems in human body.

CO2:
Ability to discuss homeostasis in human body and distinguish the homeostatic imbalance.

CO3:
Ability to measure and discuss basic physiological signals and parameters.

References

ENT 114/3
CIRCUIT THEORY

Course Synopsis

An introductory course to electrical circuit analysis, the students will be exposed to fundamentals of electrical elements, basic laws, circuit theorems, sinusoidal steady-state analysis and ac circuit analysis. Throughout the course, the students will undergo a combination of laboratory and tutorial sessions that will assist them in understanding the theories used. At the end of the course, the students are expected to understand the concepts which will allow them to solve various circuit problems in the engineering discipline.

Course Outcomes

CO1:
Ability to distinguish between voltage and current sources and between the behaviour of resistors, capacitors and inductors in both DC and AC circuits.

CO2:
Ability to analyze simple DC and AC circuits using basic circuit laws.

CO3:
Ability to analyze more complex DC and AC circuits using techniques of network analysis.

CO4:
Ability to design and evaluate basic circuits to meet specifications.

References

ENT 115/3
ANALOGUE ELECTRONICS I

Course Synopsis

This course provides fundamental knowledge on analogue electronics. The student will be exposed to the basic structure of semiconductor materials, principle operation of selected electronic components and fundamental of electronic circuit design. Students will be introduced with several types of selected electronic components which are Diode, Bipolar Junction Transistor (BJT), Field Effect Transistor (FET) and Thyristors.
Course Outcomes

CO1:
Ability to explain the theory of semiconductor materials and selected electronic devices.

CO2:
Ability to illustrate the operation and application of selected electronic devices.

CO3:
Ability to design and evaluate diode circuit and biasing of BJT and FET.

References

ENT 116/3
DIGITAL ELECTRONIC PRINCIPLES

Course Synopsis

In this course, the students will be exposed to the basic principle digital systems, digital circuit design and analysis. Lecture and practical will cover Algebra Boolean, Numbering system, Basic Logic Gate, Combinational Logic Circuit Design, Bi-stable Memory.
ENT 141/3
ENGINEERING STATICS
Course Synopsis
The objective of the course is to evaluate problems related to conceptual mechanics in static conditions. It covers topics of equilibrium force analysis of a particle in static conditions, equilibrium force analysis for rigid body, structural analysis, friction analysis, center gravity and centroid analysis, and moment of inertia analysis.

Course Outcomes
CO1: Ability to evaluate problems related to static equilibrium force, concepts of mechanics and vector mechanics.

CO2: Ability to evaluate problems related to moment of a force, equilibrium in rigid body and forces acting on structures.

CO3: Ability to evaluate problems related to frictions, center of gravity, center of mass for a system and moment of inertia of an area.

References

ENT 142/3
ENGINEERING DYNAMICS
Course Synopsis
The objective of the course is to enable students to evaluate problems related to mechanics concepts in dynamic condition. The course covers topics of force and acceleration, work and energy, and also impulse and momentum for both kinematics of a particle and planar kinetics of a rigid body problems.

Course Outcomes
CO1: Ability to analyze problems related to rectilinear kinematics, law of motions, and also concepts mechanics and vector mechanics.

CO2: Ability to evaluate problems related to kinematics of particle, involving force and acceleration, work and energy, and also impulse and momentum.

CO3: Ability to evaluate problems related to planar kinetics or a rigid body, involving force and acceleration, work and energy and also impulse and momentum.

References

ENT 143/3
THERMODYNAMICS I
Course Synopsis
To introduce the concepts and basic knowledge of thermodynamics to the students of mechanical engineering. Emphasis will be given to the first and second laws of thermodynamics, physical properties, pure substances, enthalpy, entropy, ideal and real gas, and energy.

Course Outcomes
CO1: Ability to identify, apply the basic concepts of thermodynamics; the concept of energy transfer, the First Law of Thermodynamics and evaluate them.

CO2: Ability to calculate the properties of pure substances and solve problems related to energy evaluate for close and open systems.

CO3: Ability to identify, explain the Second Law of Thermodynamics, apply it to reversible, irreversible processes and analyze energy. Ability to evaluate the entropy of a system undergoing a process.

References
ENT 144/2
MACHINING SKILLS

Course Synopsis

The objective of this course is to introduce and provide the students with theoretical and practical skills that are required in fabricating and manufacturing mechanical parts or components. At the end of this course the students will be able appreciate various skills and technology in manufacturing processes include Manufacturing Metrology, Welding, Conventional Machining, CNC Machining and EDM Machining.

Course Outcomes

CO1:
Ability to describe and choose the proper measurement tools and the safety procedures to complete a particular manufacturing process.

CO2:
Ability to construct and describe the proper manufacturing process to complete a finish product.

CO3:
Ability to analyze problems related to production, forming of metals, light alloys corrosion and magnetic materials.

References

ENT 145/3
MATERIALS ENGINEERING

Course Synopsis

The objective of the course is to enable the students to analyze problems related to material selection, process selection and metal structure in materials engineering. The course covers topics on atomic structure of materials, materials selection, phase diagrams, microstructure, diffusion in solids, physical and mechanical properties of metals, light alloys, corrosion and magnetic materials.

Course Outcomes

CO1:
Ability to analyze problems related to material selection, process selection and metal structure in materials engineering.

CO2:
Ability to analyze problems related to production, forming of metals, light alloys corrosion and magnetic materials.

CO3:
Ability to analyze problems related to production, forming of metals, light alloys corrosion and magnetic materials.

References

ENT 150/3
ENGINEERING GRAPHICS
& COMPUTER AIDED DRAFTING

Course Synopsis

The aim of this course is to expose mechanical engineering student to basic concepts and applications of engineering graphics and computer aided drafting.

Course Outcomes

CO1:
Ability to design and reproduce drafting and technical drawings using proper techniques.
CO2:
Ability to design and reproduce 2-dimensional drawings to 3-dimensional drawings and vice versa.

CO3:
Ability to realize basic concepts of drafting and to design engineering projects using computer aided drafting software.

References

ENT 153/4
PRINCIPLES OF THERMO-FLUIDS AND MATERIALS

Course Synopsis
This course aims to introduce to the mechatronic engineering students the basic knowledge on the principles of mechanical sciences. It includes basic aspects related to material engineering, fluid mechanics and Thermodynamics.

Course Outcomes

CO1:
Ability to describe the Mechanical properties of materials and analyse tensile, compressive, shear stresses & strains, and torsional deformation.

CO2:
Ability to calculate the pressure variation in a static fluid, and to analyze the resulting hydrostatic forces on plane and curved submerged surfaces.

CO3:
Ability to describe, explain and analyze an Energy equation for fluid flow problems.

CO4:
Ability to identify, analyze and solve energy balance problems for closed and steady flow systems and devices.

References

ENT 161/4
ELECTRICAL CIRCUITS

Course Synopsis
The study includes electrical elements and basic laws, circuit theorems, sinusoidal steady state analysis and ac circuit analysis. This course also will expose students to the practical work of the study that are included in 4 modules of laboratory session. At the end of this course, students should understand and be able to solve circuit analysis.

Course Outcomes

CO1:
Ability to define and explain basic concepts of Electric elements and Basic laws

CO2:
Ability to choose, apply, and analyze electrical circuits to solve engineering problems.

CO3:
Ability to explain, apply, and analyze AC circuits.

References
ENT 162/4
ANALOGUE ELECTRONICS
Course Synopsis
This course is designed to introduce the basic concepts of semiconductor electronics and its applications. This course also helps the students to apply the theory to design, developing and test electronic circuits.

Course Outcomes

CO1:
Ability to define and analyze the components and characteristics of semiconductor devices.

CO2:
Ability to discuss and analyze basic application of semiconductor devices.

CO3:
Ability to discuss and analyze application of power and operational amplifiers.

CO4:
Ability to analyze and design basic electronic systems.

References

ENT 188/3
ELECTRICAL TECHNOLOGY
Course Synopsis
The objective of the course is to introduce the students with the fundamentals concept of electric circuits, electric supply system and installation, magnetic and electromagnetic, inductance, capacitance and AC circuit, three-phase system, basic principles of electrical machines, DC and AC electrical machines, transformer and electrical safety. The laboratory will be used to aid the students understanding of the concept introduced.

Course Outcomes

CO1:
Ability to analyze electrical circuits to solve engineering problems.

CO2:
Ability to analyze AC Circuits.

CO3:
Ability to analyze the characteristics three-phase circuits and electromagnetic.

CO4:
Ability to analyze the operation of Electrical Machines and their applications.

References

ENT 189/3
COMPUTER PROGRAMMING
Course Synopsis
This module focuses on problem solving strategies and the use of algorithmic language to describe such problem solving. It introduces the principles of procedural programming, data types, control structures, data structures and functions, data representation on the machine level. This course also introduces the basic concepts of object oriented programming. Various problems are considered to be solved using C-like procedural programming language.

Course Outcomes

CO1:
Ability to define the basic technique of programming.

CO2:
Ability to apply suitable programming technique to solve a given problem.
CO3: Ability to develop solution to particular problem and translate into programming code.

CO4: Ability to develop perpetually seeks and acquires contemporary in advance programming technique and scale.

References

ENT 216/3 ANALOGUE ELECTRONICS II

Course Synopsis

This course provides further knowledge on analogue electronics. The student will be exposed to the concept and operation of amplifiers including cascade amplifier, power amplifier and the operational amplifier. Students will also be introduced with the operating principles of active filters, feedback circuits, oscillators and voltage regulators.

Course Outcomes

CO1: Ability to analyze the operation, application and frequency response of power amplifiers and operational amplifiers.

CO2: Ability to analyze the principles of active filters, feedback circuits, oscillators and voltage regulators in electronic applications.

CO3: Ability to design amplifiers, active filters and oscillators.

References

ENT 217/3 PRINCIPLES OF SIGNAL & SYSTEM

Course Synopsis

This course introduces the different types of signals and networks present in a communication system. Emphasis mainly will be on continuous signal.

References

ENT 218/3
BIOMECHANICS

Course Synopsis
This is an introductory course to biomechanics which covers the engineering mechanics, anatomy and basic applications on the analysis of the human body as mechanical systems.

Course Outcomes

CO1:
Ability to define, explain and compare the biomechanics and anatomy terminologies and their relationships

CO2:
Ability to differentiate and analyze the relationship of kinematics and kinetics of a particle and rigid body.

CO3:
Ability to solve engineering problems by choosing appropriate method that related to statics and dynamics.

References

ENT 219/3
BIOMATERIALS

Course Synopsis
This course is designed to provide a basic knowledge of biomaterials and to provide understanding of interactions between physiological components and biomaterials. Ranges of materials currently being utilized for various biomedical applications and their biocompatibility with references to the biological responses and environments available will be discussed.

Course Outcomes

CO1:
Ability to describe the concept of biocompatibility, analyze and follow basic properties of materials in medical applications.

CO2:
Ability to propose the suitable materials for specific biomedical applications and explain and display their effects with respect to biocompatibility.

CO3:
Ability to assess tissue reactions to implanted biomaterials.

CO4:
Ability to illustrate the main components of biomedical implants, describe their function and justify the important characteristics of the implanted materials.

References

ENT 220/3
LINEAR CONTROL SYSTEM

Course Synopsis
This course will introduce students to control system techniques for analysis and design; includes mathematical modeling of biomedical systems, stability analysis, time domain analysis and frequency domain analysis. PID and lead-lag controllers design using root locus will be discussed. The controller performance will be evaluated both in time and frequency domains. MATLAB software will be used for the analysis and design. At the end of the course, the students should be able to analyze, design and evaluate controlled systems.

Course Outcomes

CO1:
Ability to analyze basic concepts of control theory applications (including biomedical systems).
CO2: Ability to analyze system response, and stability in time domain.

CO3: Ability to analyze system response, and stability in frequency domain.

CO4: Ability to design PID and lead-lag controllers.

References

ENT 221/3 BIOMEDICAL ACTS, STANDARDS & SAFETY

Course Synopsis
The course aims to introduce the acts and standards used in biomedical engineering. This includes ethical issues and the power system safety of electrical appliances especially medical equipments. The course focuses on the safety issues in the healthcare institution which particularly emphasized on medical devices and their interrelation with the hospital’s environment.

Course Outcomes

CO1: Ability to employ regulatory standards in ensuring safety and reliability of medical technology.

CO2: Ability to demonstrate safety awareness in dealing with hazards from medical equipment.

CO3: Ability to manage healthcare technology and demonstrate ethical responsibility in the field of biomedical engineering.

References

ENT 222/3 ELECTROMAGNETIC FIELD THEORY

Course Synopsis
The course provides a fundamental knowledge on electromagnetic. On completion of this course, students should have a firm grasp of basic electromagnetic and identify their effects on the biological system which covers bioelectric, bio-electromagnetic, and bio-magnetic phenomena.

Course Outcomes

CO1: Ability to define and explain basic theory of electromagnetism.

CO2: Ability to apply the fundamental mathematics of vector analysis and Maxwell’s equations to solve and analyze electromagnetic problems.

CO3: Ability to identify and differentiate the differences of magnetic materials and relate the EM properties of materials.

CO4: Ability to analyze the characteristic and mechanism of electromagnetic wave in different situation.

References
ENT 223/3
MACHINE & ELECTRICAL DRIVES

Course Synopsis

This course provides the student both theories and applications of electrical machines and drives which include different types of motor, generator and transformer. This course allows the students to identify and select a suitable electrical machines and drives for various applications.

Course Outcomes

CO1:
Ability to explain the principle and operation of different types of electrical machines.

CO2:
Ability to compare and analyze the performance characteristics of electrical machines.

CO3:
Ability to explain and compare the different types of electrical drives.

CO4:
Ability to select and design suitable electronic drives for speed control of electrical machines.

References

ENT 241/3
FLUID MECHANICS I

Course Synopsis

This course aims to develop the student basic knowledge on the principles of fluid mechanics and the application of these principles to practical, applied problems. Emphasis is on fluid properties, fluid statics, flow of fluids in pipes, and in non-circular conduits. The students shall also be introduced on momentum analysis and its application in engineering problems.

Course Outcomes

CO1:
Ability to identify and calculate various properties of fluids.

CO2:
Ability to respond and analyze problems related to fluids statics, fluids kinematics, and conservation of mass and Bernoulli equation.

CO3:
Ability to analyze momentum of flow systems, identify moments acting on a control volume and use control volume analysis to determine the forces associated with fluid flow.

References

ENT 242/3
SOLID MECHANICS I

Course Synopsis

The objective of the course is to introduce the fundamental theories of solid mechanics. The basic of mechanics that have been learned in static and dynamic subjects will be extended and emphasized on solid materials. The course covers the law of mechanics, the concept of stress and strain, torsion and bending. The theoretical knowledge will be emphasized with practical in the lab. The tests of tensile and torsion will be performed. The testing of materials will be referred to international standards so that the students have a proper knowledge of material testing.
Course Outcomes

CO1:
Ability to apply the fundamental theory of solid mechanics (mechanical properties, the relation between stress and strain).

CO2:
Ability to identify, calculate and analyze cases of axial loading, torsion, bending.

CO3:
Ability to analyze momentum of flow systems, identify moments acting on a control volume and use control volume analysis to determine the forces associated with fluid flow.

References

ENT 242/3
SOLID MECHANICS I

Course Synopsis

The objective of the course is to introduce the fundamental theories of solid mechanics. The basic of mechanics that have been learned in static and dynamic subjects will be extended and emphasized on solid materials. The course covers the law of mechanics, the concept of stress and strain, torsion and bending. The theoretical knowledge will be emphasized with practical in the lab. The tests of tensile and torsion will be performed. The testing of materials will be referred to international standards so that the students have a proper knowledge of material testing.

Course Outcomes

CO1:
Ability to apply the fundamental theory of solid mechanics (mechanical properties, the relation between stress and strain).

CO2:
Ability to identify, calculate and analyze cases of axial loading, torsion, bending.

CO3:
Ability to apply and solve the combination cases by using the stress and strain transformation.

References

ENT 243/3
THERMODYNAMICS II

Course Synopsis

To introduce the concepts and the applications of thermodynamics to the students of mechanical engineering. Emphasis will be given to the gas power cycles, vapour power cycles, refrigeration cycles, gas mixture, gas vapour mixtures and air-conditioning, chemical reactions, compressible flow and the applications in industry and in everyday life.

Course Outcomes

CO1:
Ability to identify, describe, and illustrate the concepts of gas and vapour power cycles and their applications. Ability to evaluate and solve the related problems.

CO2:
Ability to explain refrigeration cycles, heat pumps and refrigerant selection. Ability to calculate and evaluate problems of refrigeration cycles.

CO3:
Ability to describe, apply, evaluate and solve the problems of gas mixtures, gas–vapour mixture and air conditioning.

CO4:
Ability to explain, interpret and determine the chemical reactions, reacting systems and the adiabatic flame temperature. Ability to explain the concepts of compressible flow and evaluate problems on stagnation, Mach. No., isentropic flow, shock wave and expansion wave.
Course Outcomes

CO1:
Ability to describe and choose the right raw materials for selected manufacturing processes.

CO2:
Ability to describe, display and analyze the manufacturing processes for a finished product.

CO3:
Ability to choose, compare and evaluate the use of proper machine to complete a particular manufacturing process.

References

ENT 244/3
MANUFACTURING PROCESSES

Course Synopsis

This course is an introduction of manufacturing processes and techniques used in industry to convert raw materials into finished or semi-finished part. This includes the study on the characteristics of manufacturing processes such as forming, casting, moulding, rapid prototyping, non-conventional machining and welding, soldering and mechanical fasteners. The influence of materials and processing parameters in understanding individual processes are also highlighted.

References

ENT 245/4
PRODUCT DESIGN DEVELOPMENT

Course Synopsis

The objective of this course is to present in a clear and detailed way a set of product development methods aimed at bringing together the marketing, design, and manufacturing functions of the enterprise. This course aims to develop an understanding of customer's needs and product marketability through the subject theme of "Customers/User Centred Design". Student will use appropriate engineering approaches and methods to analyze user needs and formulate solution to the design problems.

Course Outcomes

CO1:
Ability to identify design requirements from general problem descriptions.

CO2:
Ability to develop systematically a design from concept to prototype.

CO3:
Ability to communicate clearly design ideas and information.

CO4:
Ability to evaluate critically the designs using engineering criteria and predictive usage.

References

ENT 246/3
SOLID MECHANICS II

Course Synopsis
The objective of the course is to enhance the understanding of the topics that have been learned in Solid Mechanics I. The topics are extended and emphasized on stress transformation occur in beam, shaft and member. It is also covered an introduction on buckling and energy method theory.

Course Outcomes

CO1: Ability to analyze shaft, beam and member subjected to various loadings and develop a stress strain transformation analysis.

CO2: Ability to recognize, calculate and solve deflection in structural analysis, calculate buckling and strain energy applied by various loadings.

CO3: Ability to calculate buckling and strain energy applied by various loadings.

References

ENT 247/3
FLUID MECHANICS II

Course Synopsis
This course is to develop the knowledge of student on dimensional analysis and modelling. Emphasis is given to explain equations of motion, and inviscid flow. Some basic, plane potential flows with their superposition are analyzed. Compressible fluid flow and particle mechanics are also covered in this course. At last will be exposed to the concept and analyze of turbo machinery.

Course Outcomes

CO1: Ability to analyze dimensional analysis, modelling, and problems related to losses in pipe flows and flow over bodies.

CO2: Ability to evaluate the consequences of compressibility in gas flow and/ or the effect of area changes for one dimensional isentropic subsonic and supersonic flows.

CO3: Ability to develop analytical techniques for particle mechanics problems based on Stoke’s law/Darcy’s law/Carmen-Kozeny equation in fluid systems.

CO4: Ability to analyze different type of turbomachinery.

References

ENT 256/4
MACHINE DESIGN

Course Synopsis
This course enables the students to comprehend and identify theoretical design as well as the machine elements that need to be considered in machine design process. This course also encourages the students to think as a machine designer. The concept and principle of machine design taught will be applied in designing machine, focusing on the outcome of innovative student thinking.
Course Outcomes

CO1: Ability to discuss, apply, and organize the concept and principle of design process.

CO2: Ability to discuss, apply, and organize machine elements and analyze position, velocity and acceleration of a point in a linkage.

CO3: Ability to analyze, and construct machine elements to develop a mechanism.

CO4: Ability to apply, analyze and sketch mechanism design (linkage synthesis).

References

ENT 263/4 DIGITAL ELECTRONICS

Course Synopsis
This course is designed to introduce the basic principle of digital systems and digital circuit design with analysis. Lecture and practical will cover the following: Algebra Boolean, Numbering system, Basic Logic Gate, Combinational Logic Circuit Design, Bi-stable Memory Devices and Sequential Circuits Design.

Course Outcomes

CO1: Ability to explain the concepts of digital electronic system.

CO2: Ability to analyze the combinational logic circuit.

CO3: Ability to analyze the sequential logic circuit.

CO4: Ability to apply the digital electronic components in Mechatronic engineering applications.

References

ENT 265/4 MICROCONTROLLER & INTERFACES

Course Synopsis
This course is designed to introduce the Microchip PIC18 microcontroller architecture and help the students to explore the embedded system application. This includes the knowledge of PIC18 hardware system, assembly language programming, I/O interfacing, arithmetic operations, data transfer, timers, serial port programming, interrupts, LCD and keyboard interfacing and data converters. The course also helps student to design and develop simple real-world applications based on PIC 18 microcontroller system.

Course Outcomes

CO1: Ability to describe and explain the theory and basic architecture of microcontroller.

CO2: Ability to describe and write assembly language and illustrate the PIC18 microcontroller built-in functions.

CO3: Ability to analyze and apply the microcontroller with I/O devices.

CO4: Ability to evaluate and develop a simple microcontroller-based application.

References

References

ENT 268/3 ELECTROMAGNETICS THEORY

Course Synopsis
This course is designed to introduce the theories and concepts of electromagnetic fields. Student will be exposed to basic postulates of electrostatic and electromagnetic fields and able to solve related problems. Finally the students will be developing the ability to apply the fundamental mathematics of vector analysis and Maxwell's equations to in electromagnetic problems.

Course Outcomes

CO1:
Ability to obtain basic theory of electrical and magnetic fields.

CO2:
Ability to perform basic postulates of electrostatic and magnetostatic field.

CO3:
Ability to apply the fundamental mathematics of vector analysis and Maxwell's equations to in electromagnetic problems.

References

ENT 281/3 SIGNALS AND SYSTEMS

Course Synopsis
The course aims to introduce the concept of signals and systems analysis, the continuous signal and discrete signal functions and types of signal transformation. It begins with familiarization with different types of functions and relates them with convolution. To understand the Fourier series, Laplace-transform and Z-transform and familiarize with the properties involved the transform and the inverse method. In general how the signals and systems are analyzed in the time and frequency domain.

Course Outcomes

CO1:
Ability to identify type and waveform of the signals and its characteristics in engineering system.

CO2:
Ability to analyze signals and determine the process of the systems.

CO3:
Ability to identify the system response using variable methods.

CO4:
Ability to analyze signals using related software.

References

ENT 286/3 INSTRUMENTATIONS AND MEASUREMENTS

Course Synopsis
An introduction to measurement systems; basic measurement circuits; resistance-based transducers; magnetic-based transducers; capacitance-based transducers; self-generating transducers; electrochemical transducers; semiconductor transducers; mechanical transducers in flow measurement, pressure, force and
ENT 288/3 MICROPROCESSORS

Course Synopsis
The aim of this course is to study the Intel 8085 microprocessor architecture and relate that knowledge to the design of microprocessor based systems. This includes the design technique for interfacing memory, input and output for the systems. The study of 8085 instruction set and various software development tools are also emphasized as the knowledge are needed in the design of the microprocessor-based systems.

Course Outcomes

CO1: Ability to explain basic concepts of transducers, sensors and measurement techniques.

CO2: Ability to apply interfacing concept between transducers and computer and data collection from measurement techniques.

CO3: Ability to apply suitable measurement concepts in specific engineering problem.

CO4: Ability to design measurement system using suitable sensors and transducers.

References

ENT 289/3 DRIVES AND POWER ELECTRONICS

Course Synopsis
The aim of this course is to introduce students about power semiconductor devices, commutation, power converters and control, adjustable speed dc and ac motor drives, applications of microprocessor and digital signal processor in power electronics.

Course Outcomes

CO1: Understand the theory and basic architecture of microprocessor.

CO2: Able to program a microprocessor system using assembly language.

CO3: Understand and capable of interfacing the microprocessor to the I/O devices.

CO4: Able to develop a simple application on a microprocessor-based system.

References
References

ENT 315/4
MEDICAL SIGNAL PROCESSING

Course Synopsis

This course is an introduction to DSP concepts and implementation. It starts by explaining the need for digital signal processing and DSP systems. A complete model of a DSP system is examined from the input transducer, through all the stages including: signal conditioning, anti-aliasing filter, analog-to-digital and digital-to-analog conversion, output smoothing filter, and output transducers. Sampling theory, sample resolution and anti-aliasing filters are explored with real examples to illustrate this important area of DSP. DSP tools are demonstrated to illustrate the tools available needed to apply DSP techniques. C compiler is used in the laboratory sessions.

Course Outcomes

CO1:
Ability to explain the basic concept of DSP and acquisition signal process.

CO2:
Ability to explain on the filter used and its design.

CO3:
Ability to discuss on image processing method.

CO4:
Ability to discuss the tools used for DSP.

References

ENT 316/3
PRINCIPLES OF COMMUNICATION SYSTEMS

Course Synopsis

This course is designed to introduce the principles of communication system and its applications in communication, broadcasting and other modern equipments. At the end of the course, the students are expected to provide clear understanding in fundamental communication system, relate the principles to various applications in engineering field and propose a conceptual model of a communication setup.

Course Outcomes

CO1:
Ability to analyze mathematical function of communication system model.

CO2:
Ability to evaluate performance of elements in communication device.

CO3:
Ability to propose a conceptual setup of a communication system based on specific requirement.

References

ENT 317/4
MEDICAL ELECTRONICS & BIOINSTRUMENTATION

Course Synopsis
This course is designed to introduce the students to medical instruments used at hospitals and in medical industries. At the end of the course, the students are expected to provide clear understanding in various medical instrumentation principles and demonstrate the ability to apply basic sensors and design basic electronic circuits for medical application.

Course Outcomes

CO1:
Ability to define, discuss, apply, distinguish and assemble basic sensors and transducers in a medical instrumentation system.

CO2:
Ability to apply, analyze, design, evaluate and assemble instrumentation amplifiers and analogue filter circuits in medical instrumentation.

CO3:
Ability to discuss, explain, apply and analyze medical devices involved in the measurement of cardiovascular and respiratory system.

CO4:
Ability to discuss, explain, apply and analyze fundamental concepts in cardiac therapeutic devices and basic medical imaging modalities.

References

ENT 318/3
ARTIFICIAL ORGANS

Course Synopsis
This is a course on artificial organs that is used for the heart, kidney, lung, pancreas and ear. This course focuses on the implementation of artificial organs by understanding the anatomical, physiological and biological transport aspects of the respective organs. At the end of the course, the students are expected to have the ability to apply the concepts and fundamental principles of the artificial organs and perform simple modeling and simulation task.

Course Outcomes

CO1:
Ability to describe concepts, fundamental principle and problems regarding artificial organs.

CO2:
Ability to analyze mathematical concepts of human physiology, biotransport and artificial organs.

References

ENT 319/3
THERMOFLUIDS

Course Synopsis
The objective of the course is to expose the students to the fundamental principles of fluid mechanic, thermodynamic, heat transfer, and also fundamental application of fluid mechanics in Biomedical Engineering. In Fluid Mechanics attention will be given to the fundamental principles of fluid mechanics and definition, fluid statics, fluid dynamics, and flow over bodies. In Thermodynamics focus is on the fundamental principles of thermodynamics and definition, the Zero-th law, the first law and the 2nd law. In heat transfer, different modes through conduction, convection and radiation will be covered.
Course Outcomes

CO1:
Ability to define, explain and analyze the fundamental principles of thermofluids.

CO2:
Ability to define, explain and analyze the fundamental principles of thermodynamics.

CO3:
Ability to define, explain and analyze the fundamental principles of heat transfer.

References

ENT 331/3
MANAGEMENT PRODUCTION AND CONTROL OF QUALITY

Course Synopsis

This course introduces productivity management such as competitiveness, ratios, work study, learning rates, and linear programming. It also introduces definitions of quality, its dimensions and views, concepts and techniques of total quality control such as statistical process control, process capability, acceptance sampling, and the relationships between productivity and quality. Where applicable, appropriate operations management software will be introduced.

Course Outcomes

CO1:
To understand the productivity concepts from different aspects of management,

CO2:
To understand the Six Sigma management tools.

CO3:
To be able to understand the statistical methods used in quality control and improvement,

CO4:
To understand the methods on how labour can improve their productivity and the measurements used to measure the labour productivity.

References

ENT 342/3
COMPUTATIONAL FLUID DYNAMICS

Course Synopsis

This course offers comprehensive contents about computational fluid dynamics. It introduces to finite difference and finite volume methods in the analysis of linear and nonlinear problems. This course discusses inviscid incompressible and compressible fluid flow governed by Euler equations and also incompressible and compressible viscous flows governed by boundary layer and Navier-Stokes equations and explain the concept of simple turbulence modelling.

Course Outcomes

CO1:
Ability to formulate the mathematic equations to fluid mechanics problem.

CO2:
Ability to analyze the CFD results using different types of elements.

CO3:
Ability to apply the CFD technique to some applications concerning fluid flow and heat transfer problems.

References

ENT 343/3 PRINCIPLES OF HEAT TRANSFER

Course Synopsis

This course offers comprehensive contents about energy transferred by interactions of a system with its surrounding which is heat and work. Extended from thermodynamics analysis through study of the modes of heat transfer: conduction, convection and radiation, and through development of relations to calculate heat transfer rate. This course also introduces performance parameters for assessing the efficacy of a heat exchanger and develops methodologies for designing a heat exchanger or for predicting the performance of an existing exchanger operating under prescribed conditions. Mass transfer being introduced in order to extend the knowledge of energy transferred.

Course Outcomes

CO1:
Ability to formulate heat transfer basic principles i.e. conduction, convection and radiation i.e. Fourier equations, Newton's low of cooling and Black body radiation. Emphasis will be given in ability to estimate heat conduction in steady state and apply the transient heat conduction, and also to evaluate convection problem in fluid flow both in internal and external force.

CO2:
Ability to evaluate heat transfer in heat exchangers.

CO3:
Ability to evaluate the problems of mass heat transfer, estimate the mass-transfer coefficient and solve the problem for its application in evaporation process.

References

ENT 345/4 MECHANICAL COMPONENTS DESIGN

Course Synopsis

The objective of the course is to introduce the concepts and principles of mechanical design. The course begins with understanding the design fundamental and followed by the component selection, stress analysis, failure theories, designing mechanical elements. Mechanical elements are screw and fasteners, mechanical springs, bearings, gear, clutches, brakes and flexible mechanical elements. The knowledge of mechanical design will be implemented in a mini project as laboratory assignment - A design of a mechanical machine by utilizing CAD software, Mdesign and Solidworks.

Course Outcomes

CO1:
Ability to explain, applies the design principles, display the designed model and analyze the failure criterion in mechanical components.

CO2:
Ability to explain material properties, select appropriate material and analyze mechanical components using stress and deformation analysis.

CO3:
Ability to analyze, propose and display mechanical components for selected mechanical systems.

References

Course Outcomes

CO1:
Ability to describe basic concept of vibrations and its applications, analyze simple-harmonic motion, measure free and force vibration for single degree of freedom.

CO2:
Ability to analyze and measure the response of various systems (two degree and multi degrees of freedom) to various inputs (free and force excitation).

CO3:
Ability to develop a model and assess vibration system parameter and estimate effectiveness of vibration isolation.

CO4:
Ability to develop the operating measurement and analyze the vibration signals.

References

ENT 346/3 VIBRATION MECHANICS

Course Synopsis
The objective of the course is to introduce the students with the skills and knowledge in vibrations disciplines. The syllabus covers the fundamental of vibration and oscillation motion, free vibration, force vibration, transient vibration, two degree of freedom systems and multiple degree of freedom systems. The students will be well prepared towards industrial application elements such as vibration control, vibration measurement and signal analysis methods.

ENT 347/3 FINITE ELEMENT METHODS

Course Synopsis
The objective of this course is to introduce finite element methods for approximate numerical solutions to engineering problems. The course concentrates on solution of structural problems, but also provides the basis for expanding to other engineering field problem. The formulation and solution of the finite element system equations for 1, 2 and 3 dimensional elements will be discussed including on how to assemble the finite element equations and applying boundary conditions. Analyses will be conducted using computer programming and commercial FEA software.

Course Outcomes

CO1:
Ability to understand the fundamental of finite element analysis concepts

CO2:
Ability to derive global stiffness matrices for plane frame elements.

CO3:
Ability to develop computer program to solve beam and frame problems by using finite element analysis.

CO4:
Ability to model and analyze structural problem by using commercial FEM software.

References
ENT 348/4
MECHANICAL SYSTEM DESIGN

Course Synopsis
This course is intended as an advanced knowledge of mechanical design for undergraduate level. Bringing together analytical and graphical techniques from previous courses to accomplish the design of a complete mechanism, machine or mechanical system. The course will emphasize on the analytical design techniques used to evaluate machine elements and machinery in mechanical. This course will utilize various Computer Aided Design (CAD) software as tools in analyzing and solving mechanical design problems.

Course Outcomes

CO1:
Ability to define kinematics of mechanisms, sketch and analyze mechanical elements of a system based on kinematics analysis.

CO2:
Ability to describe and evaluate dynamics machinery at mechanical system, and sketch linkage and free-body diagrams.

CO3:
Ability to describe and evaluate a balancing of machinery and engine dynamics and sketch in static and dynamic balancing of mechanical system.

References

ENT 363/4
MACHINE VISION SYSTEMS

Course Synopsis
This course is designed to introduce the basic concepts of machine vision and provide an understanding of the basic concepts of vision and image acquisition and processing. The course also helps the students to develop the ability of designing machine vision systems for Industrial Applications.

Course Outcomes

CO1:
Ability to organize components of machine vision systems and preprocessing concepts.

CO2:
Ability to organize imaging concepts on binary images and image segmentation.

CO3:
Ability to organize imaging concepts on edge and feature extraction.

CO4:
Ability to organize imaging concepts to design machine vision modules.

References

Course Outcomes

CO1: Ability to describe the importance of various types of robots and relate them in various industrial applications.

CO2: Ability to construct and analyze the coordinate representation, transformations and path planning.

CO3: Ability to construct and analyze robot control systems for various industrial applications.

CO4: Ability to design a robot work-cell for specific industrial task and measure its validity.

References

ENT 373/4 EMBEDDED SYSTEM DESIGN AND APPLICATIONS

Course Synopsis

The aim of this course is to enable the students to learn the concepts and requirements, as well as design a self-contained embedded system. This includes the study on the characteristics of embedded systems, hardware and software development, single chip microcontroller and programming techniques in C language and developing an embedded system application.

Course Outcomes

CO1: Ability to explain the concepts and requirements of embedded system

CO2: Ability to write a structured program in C language for embedded system application.

CO3: Ability to design embedded system applications based on a single chip microcontroller.

CO4: Ability to develop a self-contained embedded system application.

References

ENT 374/3 POWER SYSTEMS ENGINEERING

Course Synopsis

This course aims to provide basic concepts of power systems which include transmission line, transformer, power flow, fault analysis and system protection.

Course Outcomes

CO1: Ability to discuss the functional concepts of various sections of a power system network

CO2: Ability to illustrate the functions of single phase, three phase transmission lines and transformers in power flow.

CO3: Ability to analyze fault conditions using symmetrical components.

CO4: Ability to design system protection schemes in a power flow network.

References

ENT 381/2 MICROPROCESSOR

Course Synopsis

The aim of this course is to study the Motorola 68HC11 microprocessor architecture and relate that knowledge to the design of microprocessor based systems. This includes evaluation of a simple application on a microprocessor-based system. The study of 68HC11 instruction set and various software development tools are also emphasized as the knowledge are needed in the design of the microprocessor-based systems.

Course Outcomes

- CO1: Ability to describe and explain the theory and basic architecture of microprocessor.
- CO2: Ability to write and program a microprocessor system using assembly language.
- CO3: Ability to analyze and apply the microcontroller with I/O devices.
- CO4: Ability to evaluate a simple application on a microprocessor-based system.

References

ENT 383/3 NETWORK & COMMUNICATION ENGINEERING

Course Synopsis

This subject will cover all the basic principles and concepts of communication system including the basic elements of communications, signal analysis, amplitude modulation, angle modulations and digital modulations, as well as transmission channels and medium. In addition, introductions to signal propagations and calculations of signal to noise ratio are also introduced to relate the students with real world applications.

CO2: Ability to obtain mathematical model of modulation.
CO3: Ability to apply principle of various types of network and communication systems.
CO4: Ability to select equipments for the industrial network and communication technology.

References

ENT 385/3 CONTROL ENGINEERING

Course Synopsis

This is an introduction course to control systems engineering. Students will be exposed to the mathematical modeling for mechanical, electrical as well as electro-mechanical systems using transfer functions, signal-flow graphs and Mason’s rule. They will conduct system performance analysis in time and frequency domain. System
using transfer functions, signal-flow graphs and Mason’s rule. They will conduct system performance analysis in time and frequency domain. System stability will also be studied along with the root locus analysis. Finally the students will be introduced to system compensation design using PID and lead-lag controllers. The laboratory sessions will be conducted to enable the students to test the theory.

Course Outcomes

CO1:
The ability to obtain the mathematical model for electrical and mechanical systems.

CO2:
The ability to perform system’s time-domain analysis with response to test inputs. Analysis includes the determination of the system stability.

CO3:
The ability to perform system’s frequency-domain analysis with response to test inputs. Analysis includes the determination of the system stability.

CO4:
The ability to design P, PI, PD, PID, lead, lag controllers based on the analysis of the system’s response in time and frequency domain.

References

ENT 385/3
CONTROL ENGINEERING

Course Synopsis

This course aims to convey the knowledge of classical control systems, advanced classical control method, state space representation of continuous-time system, continuous-time response and performance, specifications, state space analysis and design, advanced state space control system, projects based on problems drawn from mechatronics and manufacturing.

Course Outcomes

CO1:
Ability to analyze the concepts of state-space design, non-linear system and digital control.

CO2:
Ability to apply the concept of controllability and observability

CO3:
Ability to analyze the non linear system.

CO4:
Ability to design the digital control.

References

ENT 388/3
ELECTRONICS

Course Synopsis

This course is designed to introduce the basic concepts of electronics and its applications which cover both analog and digital devices. This course helps the student to apply the theory to develop and test electronic equipments.

Course Outcomes

CO1:
Ability to describe and analyze analog electronics circuits.

CO2:
Ability to describe and analyze the digital electronics circuits.

CO3:
Ability to select and apply suitable electronic components in mechanical engineering applications.

References

Course Outcomes

CO1:
Ability to design an instrumentation system to acquire bioelectrical signals.

CO2:
Ability to design a microcontroller-based medical device and integrate with personal computer.

CO3:
Ability to function as a team in executing and evaluate design projects.

CO4:
Ability to present and defend the outcomes of a project and write technical report of acceptable quality.

References

ENT 413/3
MEDICAL IMAGING

Course Synopsis

In this course the students are introduced to the basic principle of medical imaging modalities. This will provide them the understanding of various types of diagnostic radiology such as general X-Ray, Mammography, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Upon completion, students will be able to apply the fundamental principles and evaluate the efficiency of the medical imaging modalities that have been used in healthcare industry.

References

ENT 445/2
FINAL YEAR PROJECT I

Course Synopsis
In this course, students will be applying the knowledge they have learned throughout this programme by implementing them in a research project which is carried out for two semesters. In the first semester, focus is given on the preparation of work schedule, identifying the objectives, and writing the research methodology. Students are expected to begin project work according to the planned schedule.

Course Outcomes

CO1: Ability to evaluate engineering issue(s)/problem(s) in proposed Final Year Project.

CO2: Ability to propose methodology for proposed Final Year Project.

CO3: Ability to perform audio visual presentations.

References
None

ENT 446/4
FINAL YEAR PROJECT II

Course Synopsis
In this course, students will be applying the knowledge they have learned throughout this programme by implementing them in a research project which is carried out for two semesters. In the second semester, focus is given on the project work (experiments, simulation, etc.), analysis of results and final report writing. Students are expected to complete project work according to the planned schedule.

Course Outcomes

CO1: Ability to evaluate engineering deliverable via system / prototype / algorithm / software / simulation / experimental analysis.

CO2: Ability to demonstrate project management skills (such as problem solving & interest, creativity, independence and entrepreneurship) in order to achieve project objectives.

CO3: Ability to present the findings of project using audio visual presentations.

References
None

ENT 457/3
MANAGEMENT, PRODUCTION & OPERATIONS

Course Synopsis
This course offers comprehensive contents about production and operation management in manufacturing and services. Production and operation management is the process of managing people and resources in order to create a product or a service. This course also introduces students to project management, forecasting theory, goods and services design, process strategy and capacity planning, location and layout strategies, supply chain management, inventory management theory, aggregate planning theory, Material Requirements Planning (MRP) and scheduling theory.

Course Outcomes

CO1: Ability to analyze operations management in operations, productivity, project management and forecasting.

CO2: Ability to design operations in goods and services, process control, capacity planning, location and layout strategies.

CO3: Ability to manage operations in supply chain management, inventory management, aggregate planning, material requirements planning, operations scheduling, maintenance and reliability.

References
5. R. Dan Reid and Nada R. Sanders

ENT 471/4 AUTOMATION

Course Synopsis
This course aims to convey the knowledge of automation technologies. It combines the automation technology principles and its relationship with assembly process and system, the element of sensor, actuator and drive technology as an input/output component in automation technology. It also covers automation technology and technique in terms of hardware and software control, the automation technology issues in design, engineering analysis, planning, tooling and manufacturing.

Course Outcomes

CO1:
Ability to analyze the automation technology principles and its relationship with assembly process and material handling system.

CO2:
Ability to analyze automation components such as sensor, actuator and drive/motion system.

CO3:
Ability to design automation controller system using PLC and analyze the PLC applications in field bus and computer aided automated system.

CO4:
Ability to perform in group/teams to design and assemble simple automation system using PLC and demonstrate the PLC applications in automation system.

References

ENT 473/4 MECHATRONIC SYSTEMS DESIGN

Course Synopsis
This course aims to deliver the basic knowledge of mechatronics. The course topics include sensors and transducers, signal conditioning, pneumatic, hydraulic, mechanical and electrical actuators, input and output interfacing, communication systems, programmable logic controllers, microprocessors and fault finding analysis.

Course Outcomes

CO1:
Ability to design and develop measurement systems using sensors/transducers and relevant conditioning circuits.

CO2:
Ability to design and develop actuation systems using pneumatic, hydraulic, mechanical and electrical circuit elements.

CO3:
Ability to analyze, design and develop analogue or digital controllers using closed-loop techniques.

CO4:
Ability to interface, communicate and program input/output systems using microprocessors and microcontrollers.

References
ELECTIVE COURSES

ENT 420/4
BIOLOGICAL SYSTEM MODELING

Course Synopsis
The course aims to develop quantitative engineering models describing biological systems at the cellular and tissue scale. Students will be introduced to the process of developing engineering models of biological systems, and to use simulation software for the solution of the mathematical equations describing the system behaviour.

Course Outcomes

CO1: Ability to calculate the linear and non-linear system using ordinary differential equation (ODE).

CO2: Ability to analyze the knowledge about mathematical equation into biological system.

CO3: Ability to construct and analyze the mathematical modelling of biological system.

References

Reference

ENT 423/4
ARTIFICIAL INTELLIGENT SYSTEMS

Course Synopsis
This course is intended to explore the ideas and developments in Artificial Intelligence (AI). It starts with an introduction to AI, followed by specific topics include fuzzy systems, artificial neural networks and evolutionary computation. Three case studies of AI for medical applications will be presented and discussed. At the end of this course students should know a few major techniques in AI and has experience how to apply the techniques to solve medical problems.

Course Outcomes

CO1: Ability to explain, choose and categorize the right AI techniques for simple application.

CO2: Ability to apply, display and design a Fuzzy logic system.

CO3: Ability to design a neural network system and evaluate simple optimization problem using genetic algorithm.

ENT 426/4
COMPUTED TOMOGRAPHY AND APPLICATIONS

Course Synopsis
This is an advanced course to biomedical instrumentation. Students will be exposed to the knowledge of tomography systems, principles and applications. Several types of tomography systems, its theoretical concept and algorithm will be discussed. This course is related to that some clinical applications and safety aspects.

Course Outcomes

CO1: Ability to discuss, explain, analyze and judge the concept of tomography and its suitable applications.

CO2: Ability to explain, discuss and analyze the suitable reconstruction algorithm of a tomography system.
CO3: Ability to discuss, explain and analyze the measurements of projection data of a tomography system.

CO4: Ability to discuss, explain and compare the algebraic reconstruction algorithms for suitable tomography applications.

References

ENT432/3
ENERGY CONVERSION

Course Synopsis

This course offers comprehensive contents about conversion of energies which excluded from renewable energy. This course covers fossil fuel, reciprocating internal combustion engine, Wankel rotary engine, nuclear power plant and battery. This course also discuss about the contemporary issues relate to environment and pollution.

Course Outcomes

CO1: Ability to evaluate energy conversion systems based on thermo-fluid fundamental knowledge.

CO2: Ability to explain contemporaneous issues in energy systems.

CO3: Ability to judge the impact of the usage of energy to environment and pollution issues.

References

ENT431/3
REFRIGERATION AND AIR CONDITIONING

Course Synopsis

The objective of this course is to introduce a comprehensive and wide-ranging theoretical principles and practical aspects of refrigeration and air conditioning systems. The basic of thermodynamics, heat transfer and fluid mechanics that have been learned will be extended and emphasized on this course. Student will be exposed

ENT433/3
PLASTICITY

Course Synopsis

This course is intended to serve theory plasticity in metal materials. This course is introducing the hardening plasticity, orthotropic plasticity and plasticity instability. The Application of finite elements and production processes are introduced in theory of plasticity.

Course Outcomes

CO1:
Ability to apply theory of plasticity to uniform and non-uniform stress states.

CO2:
Ability to analyze theory of plasticity in slip line field and in collapse of beam or structure.

CO3:
Ability to select the test is related to theory plasticity and estimate plasticity occurs on materials.

CO4:
Ability to estimate inelasticity buckling struts and plates, and estimate stress waves in bars.

CO5:
Ability to predict theory of plasticity in production processes and apply to finite elements in theory plasticity.

References

ENT434/3
IMPACT MECHANICS

Course Synopsis

This course offers comprehensive contents about reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. This course develops several different methodologies for analyzing collisions between structures. This is include rigid body theory for structures that are stiff. The analytical methods combine mechanics of contact between elastic-plastic or viscoplastic bodies with dynamics of structural response.

Course Outcomes

CO1:
Ability to analyze reaction forces in collinear impact.

CO2:
Ability to evaluate reaction forces in impact for 2D and 3D collision.

CO3:
Ability to evaluate reaction forces in impact for rigid body.

References

ENT435/3
ROBOTICS

Course Synopsis

This Course is designed to introduce various aspects of Robotics such as the types of robots, capabilities, characteristics, Robot Control Systems and Software, Kinematic Analysis, Principles of Inverse Kinematics, Robot Sensors and Drive mechanisms, Robot Work Dell design and Various industrial Applications.

Course Outcomes

CO1:
Ability to describe the importance of various types of robots and relate them in various industrial applications.

CO2:
Ability to construct and analyze the coordinate representation, transformations and path planning.

CO3:
Ability to construct and analyze robot control systems for various industrial applications.

CO4:
Ability to design a robot work-cell for specific industrial task and measure its validity.
ENT436/3
COMPUTER AIDED MANUFACTURING

Course Synopsis

This course is fundamental knowledge of Computer Aided Design and Computer Aided Manufacturing. In this course the concept of Numerical Control Programming is introduced for milling and lathe. The proper knowledge of Computer Aided Manufacturing will be emphasized on the numerical control programming and geometric modeling techniques also are describing using solid modeling standard.

Course Outcomes

CO1:
Ability to define Computer Aided Design and describe types of computer Aided Design system and numerical control programming.

CO2:
Ability to describe geometric modeling techniques and numerical control.

CO3:
Ability to select function of part of CNC machine and demonstrate CNC machine using numerical control programming.

References

ENT461/3
RENEWABLE ENERGY

Course Synopsis

The objective of this course is to introduce the concepts of Renewable Energy to students, emphasizing on the fundamentals principles, and as well as applications of some renewable energy (Biomass, Wind, Solar, and Hydrogen) and the other energy resources available today for sustainable development.

Course Outcomes

CO1:
Ability to discuss and evaluate energy and power in the Geothermal, Tidal, Micro Hydro and other renewable energy.

CO4:
Ability to describe and evaluate the relationships of renewable energies in the field, and their environmental impact.

References

ENT462/3
TURBOMACHINERY

Course Synopsis

This course introduces the operating principles of different types of pumps, compressors and conventional prime movers used in power generation. Analysis and design characteristic consideration in turbomachinery is also emphasized.

Course Outcomes

CO1:
Ability to interpret and evaluate the basic concepts and principles of renewable energy technologies and energy resources available today for sustainable development.

CO2:
Ability to analyze and evaluate the conversion of Biomass, Wind, Solar and Hydrogen energies to mechanical, thermal and electrical power.
Course Outcomes

CO1: Ability to explain the operating principles of different pumps, analyze their performance, select proper pump for specific application and design such a pump.

CO2: Ability to discuss the operating principles of hydraulic turbines, analyze and predict their performance and select proper turbine.

CO3: Ability to explain the operating principles of thermal turbines (steam/ gas turbines), compare their usage, vary parameters to evaluate their performance.

CO4: Ability to explain the operating principles of different compressors and analyze their performance.

References

ENT463/3 ELASTICITY

Course Synopsis

The theory of elasticity is concerned with modelling the deformations of and stresses in continuous media characterized by linear relationships between stress and strain. Applied elasticity is about developing and applying geometry-based idealizations of real physical situations and structures. Comparison with solutions obtained by using elementary strength of materials in solving engineering problems will be emphasized. Practical problems will be solved and advantages of using particular methods will be illustrated.

ENT464/3 FRACTURE MECHANICS

Course Synopsis

This course contains the theory of principles and application of fracture mechanics. The fracture mechanics have a wide range of engineering design applications, including the analysis of brittle fracture of low-toughness structural materials and many non-metallic, and quantitative prediction of fatigue crack growth in a wide range of engineering materials. It will emphasize on the mathematical principles of linear elastic fracture mechanics and their application to engineering design. Student
will conduct laboratory work with experiments using servo hydraulic fatigue testing machines and scanning electron microscopy.

Course Outcomes

CO1: Ability to describe the principles of fracture mechanics in engineering materials and examine the related problem under dynamic load.

CO2: Ability to identify the specimen configuration to use experiment in fracture toughness testing of metals/non-metals and predict fatigue strength and fatigue life using Stress versus Number of cycles curves.

CO3: Ability to estimate fatigue crack growth in metals on the fracture surface, and evaluate fatigue crack growth experiment using CT specimen.

CO4: Ability to identify the effect of varies environment on the surface fracture and estimate corrosion fatigue in environment.

CO5: Ability to identify cleavage fracture, inter-granular fracture and ductile fracture in the fractography, and calculate cohesive strength of solids.

References

ENT465/3 RAPID ENGINEERING

Course Synopsis
This is an introductory course on several rapid engineering techniques. It combines engineering prototype design theory, reverse engineering, solid freeform technology, rapid prototyping (RP) including liquid, powder and solid based process, and rapid tooling in manufacturing and the various applications of rapid engineering.

Course Outcomes

CO1: Ability to apply basic theoretical of optimization in practical engineering design situations.

References

ENT466/3 DESIGN OPTIMIZATION

Course Synopsis
This course introduces the traditional non-linear optimization methods that can be used to solve a wide range of problems across all engineering disciplines. By the end of the semester the student will have gained a basic knowledge of numerical optimization algorithms and will have sufficient understanding of the strengths and weakness of these algorithms to apply them appropriately in engineering design. Students will write simple code as well as use off-the-shelf routines to gain experience and appreciation.

Course Outcomes

CO1: Ability to organize the development of product prototyping design to construct the rapid prototype model.

CO2: Ability to select and describe the rapid prototyping processes for a finished product.

CO3: Ability to select the proper rapid prototyping tools and techniques in terms of hardware and software technologies to construct a finished product.

References
CO2: Ability to apply mathematical constructs and theoretical tools to solve linear and non-linear design problems.

CO3: Ability to formulate the optimization problem from the constraint associated with design.

References

ENT474/3 INTELLIGENT MECHATRONIC SYSTEMS

Course Synopsis
This course introduces important concepts of Artificial Intelligence (AI) and their applications in mechatronic systems. The concepts include fuzzy logic, neural network, neuro-fuzzy, genetic algorithm and pattern recognition. The mechatronic systems encompass Industrial Automation, Industrial Robotics and Control of process systems.

Course Outcomes
CO1: Ability to organize Artificial Intelligence components in mechatronics systems.

CO2: Ability to display the concepts of pattern recognition and classification.

CO3: Ability to analyze intelligent control with optimal parameter search for complex industrial systems.

CO4: Ability to analyze simple expert system for specific requirements.

CO5: Ability to analyze various autonomous guidance systems in mobile robotics application.

References

ENT478/3 MOBILE ROBOTICS

Course Synopsis
This course introduces the students the concepts and design of wheeled and walking robot mechanisms with a study on their kinematics and dynamics aspects. The course also introduces the principles and applications of Autonomous Guided Vehicles (AGV).

Course Outcomes
CO1: Ability to apply various locomotion systems in mobile robotic applications.

CO2: Ability to analyze the force-torque requirements of the mobile robots and select the most suitable actuator.

CO3: Ability to solve the kinematics problems for mobile robots.

CO4: Ability to apply suitable sensors and control systems for the wheeled mobile robot mechanisms.

CO5: Ability to analyze various autonomous guidance systems in mobile robotics application.

References
ENT 491/3
ROBOTIC CONTROL

Course Synopsis
This Course is designed to introduce the dynamic modelling of robot, the trajectory planning and robot control methods; the robot control methods encompass techniques such as linear state feedback, non-linear control and fuzzy logic control with applications in robotic automation systems.

Course Outcomes
CO1:
Ability to use Robot simulation software package such as WORKSPACE to design a robot of required structure and control, and organize a robot work cell.

CO2:
Ability to evaluate the fuzzy logic control for critical decision making in robot applications.

CO3:
Ability to explain various non-linearities in robot functioning and to analyze methods for successful control.

CO4:
Ability to choose an advanced control package (among state feedback, digital control etc) to construct relatively complex trajectory tracking.

References

ENT 493/3
ADVANCED CONTROL SYSTEMS

Course Synopsis
The aim of this course is to introduce state-space design, non-linear system and digital control. Students also will be exposed to other control methods, like robust control, predictive control and optimal control.

Course Outcomes
CO1:
Ability to analyze the concepts of state-space design, non-linear system and digital control.

CO2:
Ability to derive state-space description from continuous-time and discrete-time systems.

CO3:
Ability to design state-feedback and digital controller.

CO4:
Ability to evaluate Robust Control, Optimal Control methods.

References

ENT 497/3
ARTIFICIAL INTELLIGENCE (AI) IN ENGINEERING

Course Synopsis
This course is designed to introduce the fundamentals of Artificial Intelligence (AI). It provides an introduction to definitions of human and artificial intelligence. The students will be exposed to fuzzy systems, artificial neural networks and evolutionary computation. At the end of this course students should know a few major techniques in AI and ability to build simple intelligent systems applied to mechatronic engineering.

Course Outcomes
CO1:
Ability to choose the right AI techniques for simple applications.

CO2:
Ability to design a Fuzzy logic system.
ENT499/3
DIGITAL SIGNAL PROCESSING & APPLICATIONS

Course Synopsis

This course is designed to introduce the concepts of digital signal processing and to help the students to explore the theory and applications of digital signal processing. The course also helps the students to develop the ability of analyze and manipulate digital signals.

CO3:
Ability to design a neural network system

CO4:
Ability to solve simple optimization problem using genetic algorithm.

References

Course Outcomes

CO1:
Ability to apply concepts of digital signals in time domain

CO2:
Ability to analyze concepts of digital signals in frequency domain using fourier and z-transforms.

CO3:
Ability to analyze digital processing of continuous signals and design digital filters.

CO4:
Ability to evaluate simple digital signal processing applications.

References

CAREER OPPORTUNITIES

Graduates in this area will have the ability to engage in the design, research and development, consultancy, education, manufacturing, construction, maintenance, sales and management in industries such as manufacturing, processing, automotive, aviation and shipping, mining and services, communications and building services and medical industries.

Among of the firms that offer employment opportunities to graduates of this course are as follows:

- Vehicle making and installation firms
- Home making appliances firms
- Electronic products firms
- Plant food processors
- Oil and gas companies
- High-tech firms
- Consultant firms
- Engineering & product development firms
- Automation system firms
- Bio-medical engineering firms
- Software development firms
- Research & development agencies
- Hospitals
- Companies, maintenance and repair firms of medical equipment
- Companies, marketing and sale firms of medical equipment
- Manufacturing industry of medical instrumentation
- Support industry of other health care
Programmes Offered:

- Diploma in Electrical Engineering
- Bachelor of Engineering (Hons) (Electrical System Engineering)
- Bachelor of Engineering (Hons) (Industrial Electronic Engineering)
- Bachelor of Engineering (Hons) (Electrical in Energy Systems Engineering)
- Master of Science (Electrical System Engineering)
- Doctor of Philosophy (PhD)

SCHOOL OF ELECTRICAL SYSTEM ENGINEERING
Universiti Malaysia Perlis (UniMAP),
Tingkat 1, Blok A, Kompleks Pusat Pengajian,
Seberang Ramai, Taman Seberang Jaya, Fasa 3,
02000 Kuala Perlis, Perlis.

Tel : 04 - 9851526
Fax : 04 - 9851626
School of Electrical System Engineering offers three programmes, Bachelor of Electrical System Engineering, Bachelor of Industrial Electronic Engineering and Bachelor of Electrical Energy Systems Engineering.

The School of Electrical System Engineering has well equipped teaching areas and laboratories. The laboratory infrastructure is highly developed, with a large number of networked PCs and power engineering workstations. These include Electronic Lab, Digital Electronic Lab, Computer Programming Lab, Electrical Technology Lab, Instrumentation Lab, Power System Lab, Electrical Machine Lab, Power Electronic Lab and Electromagnetic and Machine Design Lab.

Electrical System Engineering (RK23)
The Electrical System Engineering programme leading to the degree of Bachelor of Engineering (Hons)(Electrical System Engineering) has a strong focus on the preparation of engineers who can serve the needs of the electric power industry. The programme provides emphasis on the major fields of power engineering, which includes electrical machines, power systems and high voltage engineering. These are offered as compulsory courses so as to cope with the rapid change of technology in power engineering.

Fundamental subjects on electrical circuit and power engineering are taught in the first two years of study. A broad background in mathematics and computing, electric circuits and systems, analogue electronic circuits and components, digital systems, instrumentations, communications, electromagnetics and control, necessary to underpin the more advanced courses given in the subsequent years. Students undergo practical training after the semester break of third year to gain practical knowledge from electrical power industries.

Industrial Electronic Engineering (RK45)
The School of Electrical System Engineering also offers industrial electronic engineering program leading to the degree of Bachelor of Engineering (Hons)(Industrial Electronic Engineering). This programme focuses on power electronic systems for industrial use with special emphasis on industrial electronic control, electrical machine and drive.

The programme consists of common courses for the first two years providing a broad background in mathematics and computing, electric circuits and systems, analogue electronic circuits and components, digital systems, instrumentations, communications, electromagnetics and control, necessary to underpin the more advanced courses given in the subsequent years. In the third and fourth year, the students will major in electrical system and power electronic system in which will provide the opportunity for in-depth technical study combined with a range of courses aiming to enhance the students understanding of industrial electronic application. Students undergo practical training after the semester break of third year to gain practical knowledge from electrical power industries.

Electrical Energy Systems Engineering (RK96)
Bachelor of Engineering (Hons)(Electrical Energy System) is a new programme offered under the responsibility of the School of Electrical System Engineering. This programme focuses on technological aspects and management of electricity generation including renewable energy and alternative energy sources. One the main objective of the programme is to promote the use of renewable energy for electricity generation in Malaysia.

The program consists of common courses until third years of studies which providing a broad background in mathematics and computing, electric circuits and systems, analogue electronic circuits and components, digital systems, instrumentations, communications, electromagnet, control, electrical system (generation, transmission & distribution) and power electronic. Students undergo practical training after the semester break of third year to gain practical knowledge from electrical power industries.

In fourth year, students will be focused in their major studies which are in electrical energy system and renewable energy system subjects. This will provide the opportunity for in-depth study combined with a range of courses aiming to enhance the students understanding of renewable energy applied in electrical power. In general, electrical energy system engineering programme has a broad scope, particularly in the sectors of power generation and energy renewal.
DEAN
DR. MOHD. FAREQ BIN ABD. MALEK
E-mail: mfareq@unimap.edu.my

DEPUTY DEAN
(ACADEMIC AND RESEARCH)
YM. TUNKU MUHAMMAD NIZAR BIN TUNKU MANSUR
E-mail: tunkunizar@unimap.edu.my

DEPUTY DEAN
(STUDENT DEVELOPMENT AND ALUMNI)
MR. AZRALMUKMIN BIN AZMI
E-mail: azralmukmin@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAMME
(ELECTRICAL SYSTEM ENGINEERING)
MR. NASRUL HELMEI BIN HALIM
E-mail: nasrulhelmei@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAMME
(INDUSTRIAL ELECTRONICS ENGINEERING)
MS. ERNIE BINTI CHE MID
E-mail: ernie@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAMME
(ELECTRICAL ENERGY SYSTEMS ENGINEERING)
MS. NOOR SHAHIDA BINTI JAMOSHID
E-mail: shahida@unimap.edu.my

CHAIRPERSON OF DIPLOMA PROGRAMME
(ELECTRICAL ENGINEERING)
MRS. NUR ADYANI BINTI MOHD AFFENDI
E-mail: nuradyani@unimap.edu.my

COORDINATOR FOR INDUSTRIAL NETWORKING AND QUALITY MANAGEMENT
MR. MUHAMMAD SHAKIR BIN LAILI
E-mail: mshakir@unimap.edu.my

ASISTANT REGISTRAR
MRS. SHAZLINA BINTI HJ. ISAKH
E-mail: shazlina@unimap.edu.my
LECTURERS

Prof. Dr. Ismail bin Daut
Ph.D. in Energy Conservation & Power Eng. (University of Wales, Cardiff, UK),
M.Sc. in Electrical & Electromagnetic Eng. (University of Wales, Cardiff, UK),
B. App.Sc. in Electronic & Industry Technology (USM)
No. Tel: +604-9798729
E-mail: ismail.daut@unimap.edu.my

Prof. Dr. Syed Idris bin Syed Hassan
Ph.D. in Antenna Design (Exeter University),
M.Sc. in Radar and Radio Communication Systems (Birmingham University),
B.Sc. (UKM)
E-mail: syedidris@unimap.edu.my

Prof. Robert Teasdale Kennedy
M.Sc., B.Sc.(Electrical Eng.)(Heriot-Watt University, Edinburgh, Scotland),
C.Eng. FIEE SMIEEE FIERE
No. Tel: +604-9851431
E-mail: mfareq@unimap.edu.my

Prof. Madya Dr. Siti Fatimah binti Siraj
Ph.D. (Power Systems Control)(UM),
M.Sc. (Microprocessors & Control) (University of Aston, Birmingham, UK),
B.Eng.(Electrical & Electronics Eng.) (University of Sheffield, UK)
E-mail: fatimahsiraj@unimap.edu.my

Dr. Dina Maizana Maiz Ahmad
Ph.D. (Transformer Design)(UniMAP),
Magister Technic (MT) in Electrical Conservation (Institut Teknologi Bandung (ITB), Indonesia),
B.Eng.(Electrical Technique)(Universiti Sumatera Utara (USU), Indonesia)
E-mail: dina@unimap.edu.my

Dr. Mohd. Abdur Rashid
Ph.D. (Electrical & Information Eng.) (Ryudai, Japan)
Master’s (Electrical & Electronics Eng.) (Ryudai, Japan)
M.Eng. (Electrical & Computer Eng.) (Waterloo Univ. Canada)
B.Sc. (Electrical & Electronic Eng.)(KUET, Bangladesh)
E-mail: abdurrrashid@unimap.edu.my

Dr. Mohd Fareq bin Abd. Malek
Ph.D (Radio Frequency, Microwave and Free Electron Maser), Liverpool, U.K,
M.Sc. (Eng.) Distinction (Microelectronic Systems and Telecommunications), Liverpool, U.K,
B.Eng. (Hons)(Electronic and Communication Engineering), Birmingham, UK
No. Tel: +604-9851431
E-mail: mfareq@unimap.edu.my

Mr. Abdul Rahim bin Abdul Razak
M.Sc.(Electrical Power)(USM),
B.Eng.(Electrical Power)(USM)
E-mail: abdulrahim@unimap.edu.my

Mr. Ahmad Shukri Fazil bin Rahman
M.Sc.(Electrical)(UiTM),
B.Eng.(Hons)(Electrical Instrument)(UiTM),
Dip. in Electrical (Electronic)(ITM)
E-mail: ahmadshukri@unimap.edu.my

Mr. Anayet Karim
M.Sc. in Electrical Power Eng. (UPM),
B.Sc. in Electrical & Electronic Eng. (Bangladesh Institute of Technology Dhaka (BIT Dhaka), India)
E-mail: anayet@unimap.edu.my

Mr. Azralmukmin bin Azmi
M. Eng. Electrical (Power) (UTM),
B. Eng. (Hons)(Electrical System Eng.) (UniMAP),
Dip. in Eng. (Electrical-Power) (UTM)
No. Tel: +604-9851626
E-mail: azralmukmin@unimap.edu.my

Mr. Baharuddin bin Ismail
M.Sc.(Electrical & Electronic)(USM),
B.Eng.(Hons)(Electrical)(UTM)
No. Tel: +604-9852880
E-mail: baha@unimap.edu.my

YM. Engku Ahmad Rafiqi bin Engku Ariff
M.Sc.(Electrical Power Eng.), (Newcastle University, United Kingdom),
B.Sc.(Electrical Eng.)(Purdue University, West Lafayette, United States)
E-mail: rafiqi@unimap.edu.my

Ms. Ernie binti Che Mid
M.Sc.(Electrical Eng.)(UM),
B.Eng.(Hons)(Electrical Eng.)(Power)(UM)
No. Tel: +604-9851561
E-mail: ernie@unimap.edu.my

Mr. Gomesh Nair A/L Shasidharan
M.Sc. Electrical Systems Eng.(UniMAP),
B.Eng.(Hons)(Industrial Electronics Eng (UniMAP))
E-mail: gomesh@unimap.edu.my

Mrs. Hana binti Abdull Halim
M. Eng. Electrical-Power (UTM),
B. Eng. (Hons) Electrical and Electronics Engineering (UTP)
E-mail: hanahalim@unimap.edu.my

Mr. Indra Nisja
M.Eng.(Electrical Power Eng.)(UPM),
B.Sc.(Electrical Eng.)(Universitas Bung Hatta, Indonesia)
No. Tel: +604-9798655
E-mail: indra@unimap.edu.my

Ms. Latifah binti Mohamed
M.Eng.(Electrical & Electronics)(Iwate University, Japan),
B.Eng.(Hons)(Electrical & Electronics) (Iwate University, Japan)
E-mail: latifah@unimap.edu.my
Ms. Melaty binti Amiruddin
M. Eng. Electrical- Power (UTM),
B. Eng.(Hons) Electrical and Electronics Engineering (UTP)
E-mail: melaty@unimap.edu.my

Mr. Mohd. Fayzul bin Mohammed
M.Eng.(Electrical Energy & Power System Eng.)(UM),
B.Eng.(Hons) in Electric, Electronic & System (UM)
E-mail: m.fayzul@unimap.edu.my

Mr. Mohd. Herwan bin Sulaiman
M.Eng.(Electrical - Power)(UTM),
B.Eng.(Hons)(Electrical - Electronic)(UM)
E-mail: mherwan@unimap.edu.my

Mr. Mohd. Irwan bin Yusoff
M.Sc. of Electrical System(UniMAP),
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)
E-mail: irwanyusoff@unimap.edu.my

Mr. Mohd. Saufi bin Ahmad
M.Eng (Electrical Machine Design & Drive) (USM),
B.Sc. (Electrical & Electronics)(USM)

Mr. Muhammad Hatta bin Hussain
M.Eng. (Electrical-Electronic & Telecommunication)(UTM),
B.Eng.(Hons)(Electrical)(UITM),
Dip. in Electrical Eng. (ITM)
No. Tel: +604-9852853
E-mail: muhhdatta@unimap.edu.my

Mr. Muhammad Irwanto Misrun
Magister Technic(MT)(Electrical Eng.)
(Gadjah Mada University Jogjakarta Indonesia (UGM)),
Bech. in (Electrical Eng.)(Medan Institute of Technology Medan Indonesia (ITM))
E-mail: irwanto@unimap.edu.my

Mr. Muhammad Shakir bin Laili
M.Eng.(Electrical-Power)(UTM),
B.Eng.(Electrical)(UTM)
E-mail: mshakir@unimap.edu.my

Mr. Muhd. Hafizi bin Idris
M.Eng (Electrical - Power)(UM),
B.Eng.(Hons) in Electric & Electronic Eng. (Electrical Power) (UKM)

Mr. Muzaidi Othman @ Marzuki
M.Eng.(Industrial Electronic and Control) (UM),
B.Eng.(Hons)(Industrial Electronic and Control) (UniMAP),
Dip.in.Eng.(Power Electronic and Control) (Polimas)
E-mail: muzaidi@unimap.edu.my

Mr. Nasrul Helmei bin Halim
M.Eng.(Electrical-Power)(UTM),
B.Eng.(Hons)(Electrical System Eng.) (UniMAP),
Dip.in. Electrical Engineering (Power) (UTM)
No. Tel: +604-9851517
E-mail: nasrulhelmei@unimap.edu.my

Ms. Noor Ashikin binti Mohd Razali
M.Eng. Electrical (High Voltage) (UTM),
B.Eng.(Hons)(Electrical and Electronic Eng.)(UKM)
E-mail: ashikinrazali@unimap.edu.my

Ms. Noor Hasnizam bin Hanafi
M.Eng.(Electrical)(UTHM),
B.Eng. in Electrical Eng.(Power)(UITM),
Dip. in Electrical Eng.(Power)(ITM)
No. Tel: +604-9852405
E-mail: hasnizam@unimap.edu.my

Ms. Noor Shahida binti Jamoshid
M.Eng.(Electric - Power)(UTM),
B.Eng.(Hons)(Electrical)(UTM),
Dip. in Power Electrical (UTM)
E-mail: shahida@unimap.edu.my

Ms. Noor Syafawati binti Ahmad
M.Sc. (Electrical System Engineering) (UniMAP),
B.Eng. (Electrical Engineering)(UTHM),
E-mail: syafawati@unimap.edu.my

Mrs. Nor Baizura binti Ahamad
M.Eng. Electrical (Industrial Electronic & Control)(UM),
B.Eng.(Hons)(Electrical Systems Eng.) (UniMAP),
Dip. in Eng. (Technology Computer)(PSP)
E-mail: baizura@unimap.edu.my

Mr. Norhasni bin Abdul Rahman,
M.Sc.(Tech) Electronics and Electrical Eng. (Electrical Drives)(Aalto University)
B.Eng.(Hons)(Industrial Electronic Eng.) (UniMAP)
Dip. in Electrical Engineering (Electronics) (UITM)
E-mail: norhasni@unimap.edu.my

Mrs. Norshafinash binti Saudin
M.Eng.(Electrical-Power)(UTM),
B.Eng.(Hons)(Electrical)(UTM)
E-mail: norshafinash@unimap.edu.my

Mrs. Nor Hanisah binti Baharudin
B.Eng.(Hons)(Electrical & Electronics)(UTP)
E-mail: norhanisah@unimap.edu.my

Ms. Nurhakimah binti Mohd Mukhtar
M.Eng.(Industrial Electronic & Control) (UM),
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)

Mrs. Nur Adyani binti Mohd. Affendi
M.Eng. Electrical-Electronic & Telecommunication)(UTM),
B.Eng.(Hons)(Industrial Electronic) (KUTKM),
Dip. of Electronic Communication (PUO)
E-mail: nuradyani@unimap.edu.my
Mrs. Nur Hafeizza binti Ramly
M.Sc.(Electrical-Power)(UTM),
B. Eng.(Electrical & Electronics (Electronics))(UMP)
E-mail: hafeizza@unimap.edu.my

Ms. Nur Sabrina binti Mood Noorpi
M. Eng. Electrical-Power (UTM),
B. Eng. (Hons) Electrical and Electronics Engineering (UTP)
E-mail: nursabrina@unimap.edu.my

Mrs. Risnidar Chan Bahaudin
Magister Technic(MT)(Power Systems) (Institut Teknologi Bandung (ITB), Indonesia),
B.Sc.(Power System)(Universiti Sumatera Utara (USU), Indonesia)
E-mail: risnidar@unimap.edu.my

Mr. Shuhaimi bin Zakaria @ Abdullah
M.Sc. (Electrical System Engineering) (UniMAP),
B.Eng.(Hons)(Computer & Communication Eng.)(USM)
No. Tel: +604-9851630
E-mail: shuhaimi@unimap.edu.my

Mrs. Siti Rafidah binti Abdul Rahim
M.Sc.(Electrical Eng.-Power System) (UiTM),
B.Eng.(Hons)(Electrical Eng.-Power System)(UiTM),
Dip. in Electrical Eng. (Power)(UTM)
No. Tel: +604-9852441
E-mail: rafidah@unimap.edu.my

Mrs. Surina binti Mat Suboh
M.Sc.(Electrical Eng.)(Robotics & Control) (USM),
B.Eng.(Electrical & Electronics Eng.)(UPM)
E-mail: surina@unimap.edu.my

Mr. Surya Hardi Amrin
Magister Technic(MT)(Electrical Power System)(Institut Teknologi Bandung (ITB), Indonesia),
B.Sc.(Electrical Eng.),(Universiti Sumatera Utara (USU), Indonesia)
E-mail: surya@unimap.edu.my

Mr. Syafruddin bin Hasan
Magister Technic(MT)(Electrical Eng.) (Institut Teknologi Bandung (ITB), Indonesia),
B.Sc.(Electrical Eng.),Universiti Sumatera Utara (USU), Indonesia)
E-mail: syafruddin@unimap.edu.my

YM. Tunku Muhammed Nizar bin Tunku Mansur, MIEEE, Grad.IEM(Electrical)
B.Eng.(Hons)(Electrical & Electronics)(UTP)
No. Tel: +604-9851457
E-mail: tunkunizar@unimap.edu.my

Mr. Yazhar bin Yatim
M.Sc. Power Eng.(BTU Cottbus, Germany),
B.Eng.(Electrical Systems Eng.)(UniMAP),
Dip.Electrical Eng.(Communication)(UTM)
E-mail: yazhar@unimap.edu.my

Mr. Zainuddin bin Mat Isa
M.Sc.(Electrical Eng.),(KUTKM),
B.Eng.(Hons)(Electrical)(UTM)
E-mail: zainuddin@unimap.edu.my

Mrs. Zetty Nurazlinda binti Zakaria
M.Eng.(Electrical-Power)(UTM),
B.Eng.(Electrical)(UTM)
E-mail: zetty@unimap.edu.my

Mrs. Siti Jumaiah binti Daniel
M.Sc. Electrical Eng. (Robotics)(UTM)
B.Eng.(Electrical Eng.)(MMP)
E-mail: siti@unimap.edu.my

Mr. Ahmad Muhyiddin bin Yusof
B.Eng.(Electrical Power)(UTM)
No. Tel: +604-9853782
E-mail: muhyiddin@unimap.edu.my

Mrs. Arizadayana binti Zahalan
B.Eng.(Hons)(Electrical & Electronic Eng.) (USM)
E-mail: arizadayana@unimap.edu.my

Mrs. Diyya Hidayah binti Abd. Rahman
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)
No. Tel: +604-9852853
E-mail: dhidayah@unimap.edu.my

Mrs. Habibah Hj. Mokhtaruddin
B.Eng.(Hons)(Industrial Electronics Eng.) (UniMAP),
Dip. Kejuruteraan Elektronik (Komputer) (PUO)
E-mail: habibah@unimap.edu.my

Mr. Jimirafizi bin Jamil
B.Eng.(Hons)(Electrical Eng.)(MMU),
Dip. in Electric Communication Eng. (UTM)
No. Tel: +604-9852979
E-mail: rafizi@unimap.edu.my

B.Eng.(Hons)(Electrical)(USM),
Adv. Dip. in Opto - Electronic & Photonic (Advance Manufacturing Institute)
E-mail: junaidah@unimap.edu.my

Ms. Khairul Nadiah binti Khalid
B.Eng.(Electrical)(UTM)
E-mail: khairulnadiah@unimap.edu.my

Mr. Mohd. Adzrie bin Hj. Radzali
B. Eng.(Hons) Mechanical Engineering (Multimedia University)
E-mail: mohdadzrie@unimap.edu.my

Mr. Mohd. Zulhisham bin Mohd. Radzi
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)
No. Tel: +604-9853004
E-mail: mzulhisham@unimap.edu.my

Mrs. Arizadayana binti Zahalan
B.Eng.(Hons)(Electrical & Electronic Eng.) (USM)
E-mail: arizadayana@unimap.edu.my

Mrs. Diyya Hidayah binti Abd. Rahman
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)
No. Tel: +604-9852853
E-mail: dhidayah@unimap.edu.my

Mrs. Habibah Hj. Mokhtaruddin
B.Eng.(Hons)(Industrial Electronics Eng.) (UniMAP),
Dip. Kejuruteraan Elektronik (Komputer) (PUO)
E-mail: habibah@unimap.edu.my

Mr. Jimirafizi bin Jamil
B.Eng.(Hons)(Electrical Eng.)(MMU),
Dip. in Electric Communication Eng. (UTM)
No. Tel: +604-9852979
E-mail: rafizi@unimap.edu.my

B.Eng.(Hons)(Electrical)(USM),
Adv. Dip. in Opto - Electronic & Photonic (Advance Manufacturing Institute)
E-mail: junaidah@unimap.edu.my

Ms. Khairul Nadiah binti Khalid
B.Eng.(Electrical)(UTM)
E-mail: khairulnadiah@unimap.edu.my

Mr. Mohd. Adzrie bin Hj. Radzali
B. Eng.(Hons) Mechanical Engineering (Multimedia University)
E-mail: mohdadzrie@unimap.edu.my

Mr. Mohd. Zulhisham bin Mohd. Radzi
B.Eng.(Hons)(Electrical System Eng.) (UniMAP)
No. Tel: +604-9853004
E-mail: mzulhisham@unimap.edu.my
Mrs. Norhanisa binti Kimpol
B.Eng.(Hons)(Electrical Eng.)
(Communication)(UiTM),
Dip. in Electrical Eng. (Electronics)(UiTM)
E-mail: norhanisa@unimap.edu.my

Mr. Nor Haidar bin Hashim
B.Eng.(Electrical Eng. Power)(UiTM),
Dip. in Electrical Eng. (ITM)
No.Tel: +604-9851625
E-mail: haidar@unimap.edu.my

Mrs. Nurhafiza binti Azizan
B.Eng.(Hons)(Industrial Electronics Eng.)
(UniMAP),
Dip. in Electrical (Instrumentation)(UiTM)
E-mail: hafizaazizan@unimap.edu.my

Mr. Pungut bin Ibrahim
B.Eng. Electrical (UTM),
Dip. Public Admin (UiTM)
E-mail: pungut@unimap.edu.my

Mrs. Syed Akhmal bin Syed Jamalil
B.Eng.(Hons)(Industrial Electronics Eng.)
(UiTM),
E-mail: syedakhmal@unimap.edu.my

FELLOW SLAB

En. Ahmad Zaidi bin Abdullah

En. Mohd. Asri bin Jusoh

Pn. Norkharziana binti Mohd Nanyan
M.Sc.(Electrical & Electronic Eng.)(USM),
B.Eng.(Hons)(Electrical Eng.)(UTM)

STUDY LEAVE

Prof. Madya Shamshul Bahar bin Yaakob
M.Eng (Artificial Intelligent) - Nagaoka University, Japan,
B.Eng (Electrical Electronic Systems) - Shizuoka University, Japan
E-mail: shamshul@unimap.edu.my

Mrs. Samila binti Mat Zali
M.Sc.(Electrical)(UKM),
B.Eng(Electrical)(UKM)
E-mail: samila@unimap.edu.my

Mrs. Haziah binti Abdul Hamid
M.Eng (Electrical)(UTM),
B.Eng (Electrical Power)(UTM)
E-mail: haziah@unimap.edu.my

Mr. Muzamir bin Isa
M.Eng.(Elect.) (KUITTHO & FH Koln, Germany),
B.Eng.(Elect.Power)(UTM)
E-mail: muzamir@unimap.edu.my

Mr. Rosnazri bin Ali
M.Sc.(Electrical & Electronic Engineering),
B.Eng. (Hons)(Electrical Engineering)
(RMIT Melbourne)
E-mail: rosnazri@unimap.edu.my

Mr. Mohd. Rafi bin Adzman
M.Sc.(Technology) in Electrical Engineering (Electrical Power)(TKK Finland),
B.Eng.(Hons) in Electrical Engineering (Electrical Power)(UTM),
Dip. in Electrical Engineering (Electrical Power)(ITM)
E-mail: mohdrafi@unimap.edu.my

Mrs. Shahrul Ashikin binti Azmi
M.Eng.(Electrical Power)(University of New South Wales (UNSW), Australia),
B.Sc.(Hons)(Electrical & Electronics Eng.)
(UTP)
E-mail: ashikin@unimap.edu.my

Mr. Fijay bin Fauzi
M.Eng.(Eelectrical - Mechatronic and Automatic Control)(UTM),
B.Eng. in Electrical (Power)(UTM)
E-mail: fijay@unimap.edu.my

Mr. Mohammad Faridun Naim bin Tajuddin
M.Eng.(Electrical Energy & Power System),
B.Eng.(Hons)(Electrical Eng.)(UM)
E-mail: faridun@unimap.edu.my

Mrs. Amizah binti Mohd Ariffen
B.Eng.(Hons)(Electrical)(UTM)
E-mail: amizah@unimap.edu.my

Mrs. Salsabila binti Ahmad
B.Eng.(Hons)(Electrical & Electronic)
(UNITEN),
Adv. Dip. in Industrial Automation
(Selangor Human Resource Development Centre)
E-mail: salsabila@unimap.edu.my

ASSISTANT ENGINEER

Mrs. Norsyakiela binti Ramli
E-mail: syakiela@unimap.edu.my

TECHNICIANS

Mr. Ahmad Fadhli bin Zainol
E-mail: ahmadfadhli@unimap.edu.my

Mr. Ahmad Saiful bin Salim
E-mail: saifulsalim@unimap.edu.my

Mr. Ahmad Zaker bin Roslan
E-mail: ahmadzaker@unimap.edu.my

Mr. Aidil Syukri bin Shaari
E-mail: aidil@unimap.edu.my

Mr. Arif Firdaus bin Mohd. Yunus
E-mail: arif@unimap.edu.my

Mrs. Mahshithah binti Mohamad
E-mail: mahshithahmohamad@unimap.edu.my

Mr. Mohamad Fuad bin Ahmad
E-mail: fuadahmad@unimap.edu.my
Mr. Mohamad Khairi bin Mohd. Zahir
E-mail: mkhairi@unimap.edu.my

Mr. Mohd. Ariff bin Yusoff
E-mail: ariffyusoff@unimap.edu.my

Mr. Mohd. Azlizan bin Moh Adib
E-mail: azlizan@unimap.edu.my

Mr. Mohd. Azrin bin Che Tam
E-mail: azrin@unimap.edu.my

Mr. Mohd. Faizal bin Mohd Zahir
E-mail: faizalzahir@unimap.edu.my

Mr. Mohd. Hafis bin Md. Nor
E-mail: mohdhafis@unimap.edu.my

Mr. Mohd. Hazri bin Che Nadzir
E-mail: mohdhazri@unimap.edu.my

Mr. Mohd. Izanne bin Harun
E-mail: izanne@unimap.edu.my

Mr. Mohd. Nor Ekhsan bin Nordin
E-mail: ekhsan@unimap.edu.my

Mr. Mohd. Khairul bin Abidin
E-mail: khairulabidin@unimap.edu.my

Mr. Nazril bin Husny
E-mail: nazril@unimap.edu.my

Mr. Shuhaimi bin Sulaiman
E-mail: shuhaimis@unimap.edu.my

Ms. Siti Najihah binti Zakaria @ Abdullah
E-mail: sitinajihah@unimap.edu.my

CHARGEMAN

Mr. Shukur bin Abdullah
No. Tel: +604-9853036
E-mail: shukur@unimap.edu.my

ADMINISTRATIVE STAFF

Mrs. Shazlina binti H. Isakh
Assistant Registrar
No. Tel: +604-9851636
E-mail: shazlina@unimap.edu.my

Mrs. Nordiana binti Jamadin
Dean’s Secretary
No. Tel: +604-9851526
E-mail: nordiana@unimap.edu.my

Mrs. Haslina binti Ahmad
Clerk
No. Tel: +604-9851511
E-mail: haslinaahmad@unimap.edu.my

Mrs. Nurul Nadiah binti Kamarudin
Clerk
No. Tel: +604-9851608
E-mail: nurulnadiah@unimap.edu.my

Mrs. Azizah binti Hassan
Clerk
E-mail: azizahhassan@unimap.edu.my

Mr. Muhammad Fazly bin Mansor
Officer
E-mail: mfazlym@unimap.edu.my
ELECTRICAL SYSTEM ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objectives 1
Graduates who are leaders in the field of electrical engineering as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

PROGRAM OUTCOMES-PO

PO1 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electrical engineering discipline.

PO2 Ability to identify, formulate and solve electrical engineering problems.

PO3 Ability to design a system, component or process to meet desired needs.

PO4 Ability to design and conduct experiments, as well as to analyze and interpret data.

PO5 Ability to use techniques, skills and modern engineering tools necessary for engineering practices.

PO6 Ability to demonstrate/understand the social, cultural, global and environmental responsibilities of a professional engineer.

PO7 Ability to demonstrate/understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.

PO8 Understanding of professional and ethical responsibilities and commitment to the society.

PO9 Ability to function on multi-disciplinary teams.

PO10 Ability to communicate effectively.

PO11 Understanding of the need for, and an ability to engage in life-long learning.

PO12 Demonstrate understanding of project management and finance principles.
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(ELECTRICAL SYSTEM ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>EET106/3 Engineering Science</td>
<td>EET110/3 Basic Computer Programming</td>
<td>EET206/3 Electric Circuit II</td>
<td>EET208/3 Electrical Power Technology</td>
</tr>
<tr>
<td></td>
<td>EET109/3 Electronic Devices</td>
<td>EET205/4 Analog Electronics</td>
<td>EET207/3 Signals and Systems</td>
<td>EET306/4 Electrical Machines</td>
</tr>
<tr>
<td></td>
<td>EET204/3 Instrumentation and Measurements</td>
<td>EET303/3 Electromagnetic Theory</td>
<td>EET333/3 Engineering Team Project</td>
<td>EET308/3 Elective I</td>
</tr>
<tr>
<td></td>
<td>EUW233/2 Islamic Civilization and Asia Civilization</td>
<td>EUW212/2 University English Language</td>
<td>EUW322/2 Thinking Skills</td>
<td>EUWXXX/2 Option</td>
</tr>
<tr>
<td></td>
<td>EUW235/2 Ethnic Relation</td>
<td>EUWXXX/1 Co-curriculum</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
<td></td>
</tr>
</tbody>
</table>

135 15 17 17 17 17 4 16 15

Total Units for Graduation 135

Elective I: EET427/3 Industrial Electronic Control or EET426/3 Power Electronics II or EET431/3 Electrical Energy System
Elective II: EET418/3 Power Quality or EET433/3 Renewable Energy System
INDUSTRIAL ELECTRONIC ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objectives 1
Graduates who are leaders in the field of electrical engineering as demonstrated via career advancement.

Programme Objective 2
Graduates who are members of and contribute to professional society.

Programme Objective 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

PROGRAM OUTCOMES-PO

PO 01 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electrical engineering discipline.
PO 02 Ability to identify, formulate and solve electrical engineering problems.
PO 03 Ability to design a system, component or process to meet desired needs.
PO 04 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 05 Ability to use techniques, skills and modern engineering tools necessary for engineering practices.
PO 06 Ability to demonstrate/understand the social, cultural, global and environmental responsibilities of a professional engineer.
PO 07 Ability to demonstrate/understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.
PO 08 Understanding of professional and ethical responsibilities and commitment to the society.
PO 09 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 Understanding of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles.
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)

(INDUSTRIAL ELECTRONIC ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>I</td>
<td>EET106/3 Engineering Science</td>
<td>EET110/3 Computer Programming</td>
<td>EET206/3 Electric Circuit II</td>
<td>EET208/3 Electrical Power Technology</td>
</tr>
<tr>
<td></td>
<td>EET109/3 Electronic Devices</td>
<td>EET205/4 Analog Electronics</td>
<td>EET207/3 Signals and Systems</td>
<td>EET306/4 Electrical Machines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EET204/3 Instrumentation and Measurements</td>
<td>EET303/3 Electromagnetic Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUT122/2 Skills And Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECT111/3 Engineering Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EUW233/2 Islamic Civilization and Asia Civilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td>EUWXXX/1 Co-curriculum</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW235/2 Ethnic Relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective:
- EET412/3 Electrical Machine Design or EET414/3 Substation Design or EET432/3 Electrical Energy Utilization
ELECTRICAL ENERGY SYSTEMS ENGINEERING
PROGRAMME OBJECTIVES (PEO)

Programme Objectives 1
Graduates who are leaders in the field of electrical engineering as demonstrated via career advancement.

Programme Objective 2
Graduates who are members of and contribute to professional society.

Programme Objective 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

PROGRAMME OUTCOMES (PO)

PO 01 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electrical engineering discipline.
PO 02 Ability to identify, formulate and solve electrical engineering problems.
PO 03 Ability to design a system, component or process to meet desired needs.
PO 04 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 05 Ability to use techniques, skills and modern engineering tools necessary for engineering practices
PO 06 Ability to demonstrate/understand the social, cultural, global and environmental responsibilities of a professional engineer.
PO 07 Ability to demonstrate/understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.
PO 08 Understanding of professional and ethical responsibilities and commitment to the society.
PO 09 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 Understanding of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles.
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(ELECTRICAL ENERGY SYSTEMS ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>EET106/3 Engineering Science</td>
<td>EET110/3 Computer Programming</td>
<td>EET206/3 Electric Circuit II</td>
<td>EET208/3 Electrical Power Technology</td>
</tr>
<tr>
<td></td>
<td>EET109/3 Electronic Devices</td>
<td>EET205/4 Analog Electronics</td>
<td>EET207/3 Signals and Systems</td>
<td>EET306/4 Electrical Machines</td>
</tr>
<tr>
<td></td>
<td>EET204/3 Instrumentation and Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EOT206/3 Engineering Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW233/2 Islamic Civilization and Asia Civilization</td>
<td>EUW212/2 University English Language</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
<td>EUW322/2 Thinking Skills</td>
</tr>
<tr>
<td></td>
<td>EUW410/2 University Malay Language</td>
<td>EUWXXX/1 Co-curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW235/2 Ethnic Relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Units for Graduation 135</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective:
EET427/4 Industrial Electronic Control or EET426/4 Power Electronics II or EET411/3 Power System Operation and Control
COURSE SYLLABUS

EET103/4 ELECTRICAL TECHNOLOGY

Course Synopsis

This course is offered to non-electrical engineering background students. This course is intended to provide students with clear understanding of the DC and AC circuits, basic principles of 3-phase AC circuits, electromagnetism and magnetic circuits. They will also gain an understanding of the basic operating principles and performance analysis of three most commonly used electric machines, namely, transformers, dc machines, and induction motors.

Course Outcomes

CO1: Ability to analyze the DC and AC circuits by using Ohm’s Law, Kirchhoff’s Current Law, Kirchhoff’s Voltage Law, Source Transformation and Thevenin’s theorem.

CO2: Ability to calculate and analyze parameters of three phase AC system for Wye and Delta connection.

CO3: Ability to explain and apply the basic concept of magnetism and electromagnetism in DC and AC machines.

References

EET106/3 ENGINEERING SCIENCE

Course Synopsis

This course aims to introduce to the Electrical Engineering students the knowledge on the principles of material engineering and thermal fluid. It includes aspects related to material engineering, thermodynamics and fluid mechanics.

Course Outcomes

CO1: Ability to explain and use the basic principles of numbering system and basic theory of binary system in digital electronics.

CO2: Ability to describe and analyze the Mechanical, Electrical and Magnetic properties of materials.

CO3: Ability to understand, apply and analyze concepts and principles of Fluid Statics, Bernoulli and Energy Equations.

References

EET107/3 DIGITAL ELECTRONICS I

Course Synopsis

To introduce and discuss the fundamental of digital circuit analysis and digital circuit design. The lecture and laboratory exercises cover the following topics: Numbering System, Boolean Algebra, Basic Logic Gates, Combinational Logic Design, and Sequential Logic Design.

Course Outcomes

CO1: Ability to explain and use the basic principles of numbering system and basic theory of binary system in digital electronics.

CO2: Ability to design and optimizes logic circuit using Boolean functions and Karnaugh maps.

CO3: Ability to design digital system applications using combinational and sequential logic design techniques.
References

EET108/3
ELECTRIC CIRCUIT I

Course Synopsis
Basically this introductory circuit course can be divided into two parts. Part I, consisting of chapter 1 through 4, is devoted to DC circuits. It covers fundamental laws and theorems, circuit analytical techniques, passive and active elements. Part 2, consisting of chapter 5 through 7, deals with AC circuits. It introduces phasors, sinusoidal steady state analysis, using previous analytical techniques under sinusoidal steady state excitation, RLC circuits, AC power calculations and power factor correction and rms values.

Course Outcomes
CO1:
Ability to derive important equations to solve problems in DC circuits.

EET109/3
ELECTRONIC DEVICES

Course Synopsis
EET 109 will expose to students the basic electronic devices. It provides in depth study on concept of pn junction, operation and characteristics of the diode. The students will be emphasized to Half wave rectifiers, Full wave rectifiers, Power Supply Filter and Regulators, Clipper and Clamper Diode circuits and Voltage Multipliers and other types of diodes that are signed for specific application including zener, Shockley diode, SCR and its application, SCS, Diac, and Triac. Bipolar Junction Transistors (BJTs) and various types of Field-Effect Transistor (FET) which are Junction Field-Effect Transistor (JFET) and the Metal Oxide Semiconductor Field-Effect Transistor MOSFET will be introduced in this course. Basic theories, principles and practical are stressed in this course.

Course Outcomes
CO1:
Ability to explain and describe the fundamental concepts of electronic Devices.

CO2:
Ability to explain and calculate the basic operations of electronic devices such as diode, BJT and various types of FET.

CO3:
Ability to calculate and analyze the basic biasing circuits using datasheet.

References
EET202/3
DIGITAL ELECTRONICS II

Course Synopsis

This course expose the students to the Combinational Logic System Design, Shift Register, Register & Register Transfer, Sequencing and Control and Computer design basic as well as Computer Organisation.

Course Outcomes

CO1: Ability to construct digital logic circuit using Register Transfer Language

CO2: Ability to analyze and convert ASM chart to logical circuit and vice versa

CO3: Ability to design a basic computer system

References

EET203/4
MICROPROCESSOR SYSTEMS AND APPLICATION

Course Synopsis

The aim of this course is to study the Intel 8085 microprocessor architecture and related knowledge to the design of microprocessor based systems. This includes the design technique for interfacing memory, input and output for the systems. The study of 8085 instruction set and various software development tools are also emphasized as the knowledge are needed in the design of the microprocessor-based systems.

Course Outcomes

CO1: Ability to explain the basic microcontroller architecture.

CO2: Ability to analyze and write a microcontroller programming language in assembly and C program.

CO3: Ability to interface the input and output devices with microcontroller.

CO4: Ability to design a simple microcontroller based system and present in group.

References

EET204/3
INSTRUMENTATION AND MEASUREMENT

Course Synopsis

The course is aimed at providing an overview of modern instrumentation and measurement techniques. It is divided into four main topics namely the fundamentals of electronic instrumentation and measurement systems; the working principles and application of sensors and transducers; principles and application of signal conditioning circuits including bridges, amplifiers and filters; and finally display, data acquisition and interfacing techniques.

Course Outcomes

CO1: Ability to define, describe and analyze the elements of a complete electronic instrumentation and measurement system

CO2: Ability to explain and apply the working principles of various sensors and signal
conditioning/processing techniques in instrumentation and measurements

CO3:
Ability to describe and analyze display systems, data acquisition systems and computer interfacing techniques in instrumentation and measurements

References

EET205/4
ANALOG ELECTRONICS

Course Synopsis
This course exposes the students to the basic knowledge in analog electronic. The exposure encompasses DC and AC analysis, frequency analysis and simple design of small-signal amplifiers. This course offers the students an exposure to the theory and applications of op-amp and frequency response. The basic principles of oscillator are also discussed. Furthermore, the students will also learn in depth about active filters and voltage regulators.

Course Outcomes
CO1:
Ability to analyze small-signal and frequency performance of basic amplifier configurations (BJT and FET) and categorize different types of power amplifiers.

CO2:
Ability to design the basic circuit of amplifier.

CO3:
Ability to differentiate the feedback amplifier and design an oscillator.

CO4:
Ability to explain the operation and analyze various types of filters.

CO5:
Ability to describe the operation, and design simple linear and non-linear voltage regulator circuits.

References

EET206/3
ELECTRIC CIRCUIT II

Course Synopsis
This course exposes the students to the circuit analysis using Laplace and Fourier Transform. Student also would able to explain the concept of mutual inductance, frequency response of AC circuit and two port network.

Course Outcomes
CO1:
Ability to explain and analyze special types of circuit such as mutual inductance and two port networks.

CO2:
Ability to analyze electric circuits using Laplace Transform, Fourier Series and Fourier Transform for the circuit comprising passive elements.

CO3:
Ability to explain the concepts of frequency response for AC circuits and derive and analyze Bode plot for various types of transfer function.

CO4:
Ability to work in team and communicate effectively.

References
EET207/3
SIGNS AND SYSTEMS

Course Synopsis
This course aims to introduce students about basic of signals and systems and learn how certain input to a system will produce the required output. Students will be exposed to signal spectrum concept and the method being utilized to analyze signal and its relations.

Course Outcomes

CO1:
Ability to identify type and analyze waveform of the signals and its characteristic in engineering systems.

CO2:
Ability to analyze signals and determine the process of the systems.

CO3:
Ability to explain and calculate the system response using variable methods.

CO4:
Ability to prepare a report in relevant topics using various resources.

References

EET208/3
ELECTRICAL POWER TECHNOLOGY

Course Synopsis
Basically, this course reviews the electrical fundamentals and introduces the students to the concept and theory of magnetism, electromagnetism and magnetic circuit. The students also will be exposed to the operating principle and analysis of transformer. Course content include the three-phase system which consist of balanced and unbalanced load.

Course Outcomes

CO1:
Ability to EXPLAIN, DEMONSTRATE and CALCULATE parameters of balanced three phase AC systems for wye and delta connections.

CO2:
Ability to EXPLAIN, CALCULATE and ANALYZE electromagnetic and its application in transformer.

CO3:
Ability to EXPLAIN, DETERMINE and ANALYZE the parameters and equivalent circuit of transformer.

CO4:
Ability to EXPLAIN, CALCULATE and ANALYZE three-phase system with balance and unbalanced load.

References

EET301/4
POWER SYSTEM ENGINEERING

Course Synopsis
This course intends to give students fair knowledge of power system engineering which covers the topics of generation, transmission and distribution systems. The sub-topics that will be emphasized are such as the per-unit system, transmission line parameters and models, load characteristics, representations of components in power system, fault and protection system.

Course Outcomes

CO1:
Ability to explain types and operation of power system generations in groups.
CO2:
Ability to solve single-line diagram problems using the per-unit system.

CO3:
Ability to calculate and analyze the transmission line parameters and models in power system.

CO4:
Ability to explain and calculate load characteristics and distribution system components in power system.

CO5:
Ability to explain and analyze fault and protection system in power system.

References

EET303/3 ELECTROMAGNETIC THEORY

Course Synopsis
Purpose of this course is to learn the basic theory and analysis of electromagnetic. Student will be exposed to the basic concepts and effects of electrostatics and magnetostatics. Theory and application of transmission line will be introduced in this course.

Course Outcomes

CO1:
Ability to explain the concept of vector analysis in electromagnetic theory.

CO2:
Ability to explain and analyze the concept of electrostatic.

CO3:
Ability to explain and analyze the concept of magnetostatic.

CO4:
Ability to apply the concept of electromagnetic in transmission line analysis.

References

EET304/3 COMMUNICATION SYSTEM ENGINEERING

Course Synopsis
This subject will cover all the basic principles and concepts of communication system including the basic elements of communications, signal analysis, amplitude modulation, angle modulations and digital modulations, as well as transmission channels and medium. In addition, introductions to signal propagations and calculations of signal to noise ratio are also introduced to relate the students with real world applications.

Course Outcomes

CO1:
Ability to explain basic principles of communication systems and the essential of communication system in real world.

CO2:
Ability to define and differentiate the different types of modulation.

CO3:
Ability to define, calculate and analyze noise in communication system.

CO4:
Ability to prepare a report in relevant topics using various resources.

References
EET306/4
ELECTRICAL MACHINES
Course Synopsis
Primarily, this Electrical Machines course can be divided into three parts. Part 1, begins by reviewing the basic concept of electromechanical conversion. Part 2, consisting of theoretical and performance analysis of DC machines, i.e. DC motors and DC generators. Part 3 will cover the theoretical and performance analysis of single/three-phase AC machines which consist of induction motor and synchronous generators and also special motors.

Course Outcomes

CO1:
Ability to define and explain the principle of electro-mechanical energy conversion, and its application to electrical machines.

CO2:
Ability to determine and analyze parameters for AC and DC Machines

CO3:
Ability to apply related software tools in understanding principle of electrical machines.

References

EET307/4
POWER ELECTRONICS I
Course Synopsis
EET307 introduces Power Electronics as a Multidisciplinary & Interdisciplinary Applications Orientated Technology emphasizing the main criterion of energy efficiency. AC-DC, AC-AC and DC-DC converter performance, including waveform analysis, is developed from theory – simulation - laboratory. EET307 introduces an awareness of Electromagnetic Compatibility (EMC) Legislation & the effects of Power Electronic Systems on Power Quality. Design aspects include understanding manufacturer’s data, co-relating data to select power semiconductors and passive components, thermal management and EMC compliance.

Course Outcomes

CO1:
Ability to explain operation, applications area and the need for design efficiency of power electronic systems.

CO2:
Ability to calculate and analyse parameters for power rectifier, SCR, Triac and power transistors.

CO3:
Ability to analyse and design AC-DC converter, AC-AC converter and DC-DC converter.

CO4:
Ability to explain and calculate the design requirements of power quality related EMC compliance and thermal management of power electronic converters.

References

EET308/3
POWER SYSTEM ANALYSIS
Course Synopsis
This course is divided into four parts. Part I, consisting of topic introduction to power system, the main problem in power system, single-line diagram, representation of power system, bus admittance and impedance matrix. Part II, consisting of topic power flow
solution by means of Gauss-Seidel, Newton-Raphson, Decoupled and Fast-Decoupled method. Part III, consisting of topic symmetrical fault, symmetrical component and unsymmetrical fault. Part IV, consisting of topic power system stability with equal area and step by step method. The students are introduced to MiPower software in the laboratory session.

Course Outcomes

CO1:
Ability to calculate, analyze power flow with Gauss-Seidel, Newton-Raphson, Decoupled and Fast-Decoupled methods.

CO2:
Ability to calculate, and analyze fault current in Symmetrical and Unsymmetrical Fault.

CO3:
Ability to calculate and analyze stability system by using Equal-Area method, and Step-by-Step method.

References

EET302/3
CONTROL SYSTEMS ENGINEERING

Course Synopsis

This is an introduction course to control systems engineering. Students will be exposed to the mathematical modeling for electrical, electromechanical as well as mechanical systems using block diagram, transfer functions, and signal-flow graphs. They will conduct system performance analysis in time and frequency domain. The course also covers system compensation design using PID and lead-lag controllers.

The laboratory sessions will be conducted to enable the students to strengthen the theory. This also includes a mini project/assignment for the system analysis and controller design.

References

EET411/3
POWER SYSTEM OPERATION & CONTROL

Course Synopsis

This course aims to provide further understanding of the fundamentals of power system operations. It mainly focuses on various aspects of electrical power generation such as energy source and transfer, power plant operation and characteristics, economical and optimal power generation with Lambda method, power system control and optimal power flow, unit commitment (UC), interconnected power systems and communication in power system. To further strengthen the theoretical background, students are exposed to simulation of power system operations and control in the laboratory using MiPower software.

Course Outcomes

CO1:
Ability to produce mathematical model from physical systems (electrical/mechanical/block diagram) by employing suitable techniques such as Mason’s law, Laplace transform and etc.

CO2:
Ability to analyze system’s response to test inputs in time or frequency domain.

CO3:
Ability to analyze control system problems by utilizing control system graphical tools such as root locus or bode plot.

CO4:
Ability to design appropriate controller/s through system compensation in performing control system analysis.
Course Outcomes

CO1:
Ability to DESCRIBE, CALCULATE and ANALYZE energy generation, power system behavior and economics of generating costs.

CO2:
Ability to CALCULATE and ANALYZE the Optimal Dispatch with transmission losses, Unit Commitment in thermal power plant and Load Shedding and DESIGN Power System Control.

CO3:
Ability to CALCULATE and ANALYZE interconnection system, operation of generators in parallel with large power system and Tie-line interchange between interconnected utilities.

CO4:
Ability to DESCRIBE, Supervisory Control and Data Acquisition (SCADA) system in power System

CO5:
Ability to CALCULATE and ANALYZE, security studies, sensitivity factors and sensitivity methods

References

EET414/3 SUBSTATION DESIGN

Course Synopsis

This course, to introduce aspects of the fundamentals and considerations of substation design, configuration and design of busbar and safety requirement. This course describe the functions of various substation main equipments, substation auxiliary included protection design against internal and external fault.

CO2:
Ability to explain, calculate and analyze the concept of generations and measurements of high voltage AC, DC, Impulse voltage and impulse current generators.

CO3:
Ability to explain the over-voltage phenomena and the related insulation coordination problems and analyze types of high voltage testing for electrical apparatus and non-destructive materials.

References

EET416/3 ELECTRICAL DRIVES

Course Synopsis

This course provides the students an exposure application of Power Electronics for electric motor drives. It emphasize on fundamental concepts of power electronic drives, electrical machines types and related applications. The aspects of load characteristic and matching drives to load also discussed.

Course Outcomes

CO1:
Ability to differentiate and explain type of motor loads and drive requirements.

CO2:
Ability to justify and analyze power electronic drives parameters based on load characteristics.

CO3:
Ability to design and recommend appropriate power electronic drives parameters in electrical machines application.

References

EET428/3
POWER ELECTRONICS
DRIVES

Course Synopsis

This course provides the student an exposure application of Power Electronics for electric motor drives. It emphasize on fundamental concepts of power electronic drives, electrical machines types and related applications. The aspects of load characteristic and matching drives to load also discussed.

Course Outcomes

CO1:
Ability to differentiate and explain type of motor loads and drive requirements.

CO2:
Ability to justify and analyze power electronic drives parameters based on load characteristics.

CO3:
Ability to explain and calculate converters parameters for power electronic drives.

CO4:
Ability to design and recommend appropriate power electronic drives parameters in electrical machines application.

References

EET422/3
ELECTROMAGNETIC
COMPATIBILITY (EMC) AND
COMPLIANCE ENGINEERING

Course Synopsis

Electromagnetic Compatibility (EMC) is an essential part of good product design to ensure compliance with International Regulations and Directives. EET422 (Electromagnetic Compatibility (EMC) and Compliance Engineering) provides an awareness of the directives that manufacturers need to consider for compliant products. EET422 introduces the fundamentals of EMC concepts, circuit design methods, PCB and system layout techniques and the tools available to design compliant products. EET 422 includes EMC test and measurement methods and knowledge of commercial EMC test equipment to enhance diagnostic skills and provide EMC solutions.

Course Outcomes

CO1:
Ability to explain and discuss the importance of EMC directives, EMC related directives and routes to compliance.

CO2:
Ability to explain and discuss an understanding of EMC basics, including interference sources, effects and solutions, common mode and differential mode interference.

CO3:
Ability to differentiate EMI solution methods including filters, shielding and grounding, and able to relate analytic solutions to compliance requirements.

CO4:
Ability to classify EMI sources and propose solutions on practical applications including Power Electronic, analogue and digital systems.

CO4:
Ability to explain and discuss EMI compliance testing procedure and able to distinguish essential test equipments including voltage sources, LISN and analyzers.

References

EET426/3
POWER ELECTRONICS II

Course Synopsis

Efficient Power Management Systems are essential for the proper operation of all modern electronic systems. EET423 provides an in depth study of Switched Mode Power Supplies (SMPS) and includes topology variations, operational modes and control strategies, performance analysis including the effects of parasitic elements and waveform analysis. Design aspects include understanding manufacturer’s data, co-relating data to select power semiconductors and passive components, thermal management and EMC compliance.

Course Outcomes

CO1:
Ability to explain and determine the Topologies, parameters of related components and thermal management in SMPS.

CO2:
Ability to interpret and analyze the rectification techniques, SMPS wave forms, SMPS control strategies and modes control.

CO3:
Ability to use related software tools to simulate SMPS Topologies and to determine and analyze device performance.

References

EET427/3
INDUSTRIAL ELECTRONICS CONTROL

Course Synopsis

This course will have a wide exposure about industrial electronics control to the students. The course will be coverage of components, circuits, instruments, equipments and control technique used in industrial automatic systems. At beginning of this course the topics will be covered are basic principle of industrial electronics control and interfacing devices. The interfacing devices will give wide exposure to the student regarding of operational amplifiers, signal processors, opto-electronic interface devices, transducers, detection sensors, actuator, digital to analog converter and analog to digital converter. The next part of this course will coverage the design of controller, proportional control, proportional

References

integral control, proportional integral derivative control, pressure control and temperature control. The servo and stepper motor control design that used in a variety of industrial automation application are also covered in this course. Typical applications of these motors are rotary table control, pen positioning and precise position control will be studied in this course. The student will be expose to programmable logic controller (PLC), PLC components, PLC programming and operational procedure. The PLC capable to perform more complex motion and process control applications.

Course Outcomes

CO1:
Ability to EXPLAIN and CALCULATE operational amplifiers, opto-electronic, signal processor, interfacing devices, transducers, detection sensors and actuator in industrial electronic control applications.

CO2:
Ability to EXPLAIN and CALCULATE digital and analog controller, temperature control, flow control and its relation to industrial electronic control applications.

CO3:
Ability to EXPLAIN, DESIGN and ANALYZE the principles operation of servo motor and transistor switching sequences to control servomotor and its application in industrial electronic control

CO4:
Ability to EXPLAIN and DESIGN ladder diagram that will perform a specified operation using PLC programming in applications of industrial electronic control

References

EET433/3 RENEWABLE ENERGY SYSTEM

Course Synopsis

This course consists of design basic system for integration of renewable generation into electricity and calculates the potential energy for different renewable technologies. This course also introduce students with the relevant conversion, storage, network interfacing and economic assessment techniques for renewable energy systems.

References

EET445/2 FINAL YEAR PROJECT I

Course Synopsis

Small-scaled research project that inclined towards designing is necessary for each final-year student. The student will be given an engineering problem (or encourage to identify on their own) and gain expertise by problem solving, investigation, research writing and effective presentation of the research outcome in the form of thesis and seminar. The area of research is mainly on Power Electronics, High Voltage, Electrical Power System & Machine Design.

Course Outcomes

CO1: Ability to apply and integrate theory and practical to solve the engineering problems.

CO2: Ability to develop suitable research methodology for the project.

CO3: Ability to explain a project in a technical report.

CO4: Ability to present and defend effectively project proposal to selected audience.

CO5: Ability to identify commercialization potential for proposed project.

EET446/4 FINAL YEAR PROJECT II

Course Synopsis

Small-scaled research project that inclined towards designing is necessary for each final-year student. The student will be given an engineering problem (or encourage to identify on their own) and gain expertise by problem solving, investigation, research writing and effective presentation of the research outcome in the form of thesis and seminar. The area of research is mainly on Power Electronics, High Voltage, Electrical Power System & Machine Design.

Course Outcomes

CO1: Ability to apply and integrate theory and practical to solve the engineering problems.

CO2: Ability to develop suitable research methodology for the project.

CO3: Ability to explain a complete project in a technical report (dissertation).

CO4: Ability to present and defend effectively project findings to selected audience.

CO5: Ability to identify commercialization potential for developed project.
CAREER OPPORTUNITIES

Electrical System Engineering, Industrial Electronics and Electrical Energy Systems graduates will have wide range of career prospects. Electrical engineers are always in demand to the industrial/private sectors, government sectors or entities and agencies that are related to the electrical system design.

Areas that need of electrical engineers are:

- Electrical/Electronics product manufacturers
- Tenaga Nasional Berhad (TNB)
- Independent Power Plant (IPP)
- Telekom Malaysia Berhad
- Angkatan Tentera Malaysia
- Jabatan Kerja Raya
- Consultants or contractors
- Education and training (universities, polytechnics and colleges)
Programmes Offered:

- Diploma in Engineering (Manufacturing)
- Bachelor of Engineering (Hons.) (Manufacturing Engineering)
- Bachelor of Engineering (Hons.) (Product Design Engineering)
- Master of Science (Manufacturing Engineering)
- Master of Science (Product Design Engineering)
- Doctor of Philosophy (Manufacturing Engineering)
Introduction

Initially, the School of Manufacturing, also known as PPKP was established with the name of the School of Manufacturing System Engineering or in short form of PPKSP on March 1, 2003. The school’s new name was then proposed to School of Manufacturing and it has been approved officially by the Ministry of Higher Education dated October 30, 2004. Among the major justification for the changing the name of the school was due to the manufacturing engineering field is larger than the manufacturing systems engineering, or in other words, engineering manufacturing system is one aspect in the field of manufacturing engineering itself.

At its inception, the School of Manufacturing commenced its operation in the location of the School Complex, located at Kubang Gajah, Arau. Starting in 2004, School of Manufacturing was moved to a new location located at the Jejawi Engineering Complex along with six other schools. Then, once again this school was moved to new location in Seberang Ramai, Kuala Perlis on 1 November 2007. Among the main factors for the second move was to accommodate the needs of the rooms for the increasing number of the academic staff, and also to facilitate communication between the non-academic staff, academic staff and students as the majority of students are placed in residential colleges around Kuala Perlis.

In line with the development of a more rapidly growing industry and a key contributor to economic growth in Malaysia, the School of Manufacturing so far has offered two programs of study at Bachelor level, namely Bachelor of Engineering (Manufacturing) and Bachelor of Engineering (Product Design).

In general, the structure of the manufacturing engineering curriculum is designed to create a balance between technical specialization and industrial management. The entire core courses are offered in order to expose students to the important aspects of the manufacturing industry particularly to the methods for the production and an exposure to manufacturing technology. Manufacturing technologies focus on the selection of appropriate technology in the manufacturing process, taking into account several important factors such as the use of appropriate machines and the optimum process in accordance with the set standard.

Apart from that, the structure of product design engineering curriculum has been designed to create a balance between functionality and aesthetic aspects of design. The entire core courses are offered to expose students to the industry, especially the production of the design product is coordinated with the leading branded products in the world as well as an exposure the students to the manufacturing technology. Designs require the skills to create and produce consumer products by using the technology available in industrial design. An application of aesthetic values is also important to allow the product to be marketed globally.

For the Bachelor program, the number of credits needed to be completed prior the graduation requirement is 135 units of credit, where 120 unit credits include core courses, while the remaining 15 credit units of courses include the University requirements. In addition, final year students also need to carry out projects which are related to education programs, in line with current industry requirements.

No less important, students are also required to carry out industrial training during the semester break before entering the fourth year of study. Students will be issued to undergo industrial training in the industries associated with the program of study offered. The main objective of these industrial training courses is required to complete the prospective graduates with the necessary technical knowledge in the real world of work in selected industries, when students were eligible for graduation.

In addition, the School of Manufacturing also offers a Diploma in Engineering (Manufacturing), Bachelor of Science (Manufacturing), Bachelor of Science (Product Design) and Doctor of Philosophy (Manufacturing). In principle, the school was founded with the goal of making the public to produce engineers who are not only skilled in specialized areas such as technical design and manufacturing, but also equipped with soft skills, entrepreneurship, languages, technology and information technology.
DEAN
DR. KHAIRUL AZWAN ISMAIL
E-mail: k.azwan@unimap.edu.my

DEPUTY DEAN
(ACADEMIC AND RESEARCH)
MR. AZMI HARUN
E-mail: azmiharun@unimap.edu.my

DEPUTY DEAN
(STUDENT DEVELOPMENT AND ALUMNI)
MR. MALIKI IBRAHIM
E-mail: maliki@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(PRODUCT DESIGN ENGINEERING)
MR. NORSHAH AFIZI SHUAIB
E-mail: norshahafizi@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAM
(MANUFACTURING ENGINEERING)
MR. MOKHTAR MAT SALLEH
E-mail: mokhtarms@unimap.edu.my

CHAIRPERSON OF DIPLOMA PROGRAM
(MANUFACTURING ENGINEERING)
MRS. SAKINAH ZAKARIA
E-mail: sakinahzakaria@unimap.edu.my

COORDINATOR FOR INDUSTRIAL NETWORKING AND QUALITY MANAGEMENT
MRS. NOORAIZEDFIZA ZAINON
E-mail: nooraizedfiza@unimap.edu.my

ASISTANT REGISTRAR
MR. SYED AMIR FATIR SYED AKHIR
E-mail: shazlina@unimap.edu.my
LEKTURERS

Prof. Dr. Mohd Zaki Ab. Muin
Ph.D. (Modelling and Control) - UM
M.Sc. (Thermofluids) - Strathclyde University, UK, B.Sc (Mech. Eng.) - Teesside Polytechnic, Middlesbrough, UK
Tel: 04-9885130
E-mail: zakimuin@unimap.edu.my

Prof. Dr. Ryspek Usbamatov
Ph.D.(Technical Sciences) - Moscow State Technical University, Russia,
M.Sc. (Technical Sciences) - National Academy of Sciences, Kyrgyzstan,
Dip. (Mechanical & Manufacturing Eng) - Moscow State Technical University, Russia
Tel: 04-9885131
E-mail: ryspek@unimap.edu.my

Prof. Dr. Zuraidah Mohd Zain
Ph.D. (Industrial Studies) - University of Liverpool, UK, B.Sc. Eng. (Materials Science and Eng.) - University of Florida, USA
Tel: 04-9885353/04-9885003
E-mail: zuraidah@unimap.edu.my

Prof. Madya Dr. Bhuvenesh Rajamony
Ph.D. Tech. (Mech. Manufacturing Eng.) – University of Bombay, India
M.Sc. Eng. (Machine Tools Eng.) - University of Madras, India
B.Eng. (Mechanical Eng.) - University of Madurai, India
Dip. Eng. (Industrial Eng.) - University of Bombay, India
Tel: 04-9885143
E-mail: bhuvenesh@unimap.edu.my

Prof. Madya Mazelan Abdul Hamid
M.Sc. (Advanced Manufacturing) - Salford University, UK
B.Sc. (Electrical Engineering) - Seoul National University, Korea
Tel: 04-9798100
E-mail: mazelan@unimap.edu.my

Dato' Nazaruddin Abdul Jalil
Masters in Fine Art Technology - UITM
B.Art & Design (Ceramics) - UITM
Tel: 04-9885023
E-mail: nazaruddinjalil@unimap.edu.my

Dr. Khairul Azwan Ismail
PhD (Impact Mechanics) - University of Cambridge, UK
M.Sc. (Impact and Explosion Engineering) - UMIST, UK
B.Eng. (Mechanical Engineering) - UMIST, UK
Tel: 04-9885353/04-9885155
E-mail: k.azwan@unimap.edu.my

Dr. Muhammad Iqbal Muhammad Hussain
PhD (Manufacturing Eng.) –UniMAP
M.Sc. (TQM) - University of the Punjab Lahore, Pakistan.
B.Eng. (TQM) - University of the Punjab Lahore, Pakistan.
Tel: 04-9885102
E-mail: miqbal@unimap.edu.my

Dr. Muhammad Saifuldin Abdul Manan
PhD. (Mechanical Eng.) - University College of London, UK
B.Eng. (Mechanical Eng) - University of Liverpool, UK
Tel: 04-9885028
E-mail: m.saifuldin@unimap.edu.my

Mr. Ahmad Fairuz Mansor
M.Eng. (Advanced Manufacturing) – Advanced Manufacturing Tech. - UTM
B.Eng. (Manufacturing) - UniMAP
Tel: 04-9885092
E-mail: fairuzmansor@unimap.edu.my

Mr. Ahmad Nabil Mohd Khalil
M.Sc. (Manufacturing) - UniMAP
B.Eng. (Mechanical Manufacturing) – UTHM
Tel: 04-9885153
E-mail: nabilkhalil@unimap.edu.my

Mr. Asmawi Sainudin
M.Sc. (Mechanical Eng.) - UPM
B.Eng. (Mechanical Eng.) – UPM
Tel: 04-9885153
E-mail: asmawi@unimap.edu.my

Miss Atikah Hj Awang @ Mohd Ramli
PhD Design (Manufacture and Engineering Mgmt) – University of Strathclyde, UK, M.Sc. (Manufacturing Systems Eng.) - Warwick University, UK
B.Eng. (Mechanical Eng.) - UNITEN
E-mail: atikah@unimap.edu.my

Mr. Azmi Harun
M.Eng. (Manufacturing Systems) - UPM
B.Eng. (Manufacturing) - UKM
Dip. Mechanical Eng. (Manufacturing) - POLIMAS
Cert. Mechanical Eng.(Manufacturing) - Politeknik Ungku Omar
Tel: 04-9885036/04-9885017
E-mail: azmiharun@unimap.edu.my

Mr. Azuwir Mohd Nor
M.Sc. (Information Technology) - UUM
B.sc. (Electrical and Computer Eng.) - Wisconsin University, USA
Tel: 04-9885134
E-mail: azuwir@unimap.edu.my

Mr. Irfan Abd Rahim
M.Sc. (Aerospace Eng.) - UPM
B.Eng. Hons (Mechanical Eng.) - KUITTHO
Dip. (Mechanical Eng.) - POLIMAS
Tel: 04-9885146
E-mail: irfanrahim@unimap.edu.my

Mr. Jamali Md Sah
M.Sc. (Industrial Control Systems) - Salford University, UK
B.Eng. (Mechanical Eng.) - Salford University, UK
E-mail: jamali@unimap.edu.my
Tel: 04-9885019
Mr. Maliki Ibrahim
M.Eng. (Electrical- Electronics and Telecommunications) - UTM
B.Eng. (Electric) Hons - UiTM
Tel: 04-9885141
E-mail: maliki@unimap.edu.my

Mr. Mohamad Ezral Baharudin
M.Sc. Mechanical Eng. (Manufacturing Systems & Automation) - USM
B.Sc. (Mechanical Eng.) Hons. - USM
Tel: 04-9851217/9853317/04-9885135
E-mail: m.ezral@unimap.edu.my

Mr. Mohamad Shaiful Ashrul Ishak
M.Eng. (Mechanical) - UTM
B.Eng. (Mechanical Aeronautics) - UTM
Tel: 04-9885061
E-mail: mshaiful@unimap.edu.my

Mr. Mohd. Azaman Md Deros
M.Eng. (Manufacturing) - UM
B.Eng. (Mechanical) - USM
Tel: 04-9885128
E-mail: azaman@unimap.edu.my

Mr. Mohd. Asyraf Che Doi
M.Phil. (Mfr Eng & Operation Management) - Univ. of Nottingham
B.Sc. (Industrial Engineering) - Univ. of Missouri, US
Tel: 04-9885114
E-mail: asyraf@unimap.edu.my

Mr. Mohd. Fathullah Ghazli @ Ghazali
M.Sc. (Manufacturing Systems) - Coventry University, UK
B.Eng. (Manufacturing) - UIA
Tel: 04-9885061
E-mail: fathullah@unimap.edu.my

Mr. Mohd. Fidzwan Md Amin Hamzas
M.Sc. (Mechanical Manufacturing) - UTHM
B.Eng. (Mechanical Eng.) - UniMAP
Tel: 04-9885085
E-mail: fidzwan@unimap.edu.my

Mr. Mohd. Sabri Hussin
M.Sc. (Innovation and Engineering Design) - UPM
B.Eng. (Manufacturing Engineering) - UniMAP
Tel: 04-9885101
E-mail: mohdsabri@unimap.edu.my

Mr. Mohd. Zamzuri Mohammad Zain
M.Sc. Production System Engineering - Toyohashi University Technology
B. Eng. Production System Engineering - Toyohashi University Technology
Tel: 04-9885048
E-mail: mzamzuri@unimap.edu.my

Mr. Mokhtar Mat Salleh
M.Sc. (Manufacturing System Eng.) - Coventry University, UK
B.Eng. Hons (Mechanical) - UKM
Tel: 04-9885015/04-9885055
E-mail: mokhtarms@unimap.edu.my

Mr. Muhammad Hasnulhadi Mohammad Jaafar
M.Sc. (Manufacturing System Eng.) - UPM
B.Eng. Hons (Mechatronics) - UIAM
Tel: 04-9885056
E-mail: hasnulhadi@unimap.edu.my

Mr. Muhammad Syahril Bahari
M.Sc. in Mechanical Engineering - USM
Bachelor of Mechanical Engineering (Hons) - UNITEN
Tel: 04-9885154
E-mail: syahrilb@unimap.edu.my

Mr. Norshah Afizi Shuaib
M.Sc. (Manufacturing Engineering) - UPM
B.Eng. (Mechanical Engineering) - UNITEN
Tel: 04-9885016/04-9885095
E-mail: norshahafizi@unimap.edu.my

Mrs. Nooraizedfiza Zainon
M.Sc. (Manufacturing Systems) - UPM
B.Eng. (Manufacturing Eng. with Management) - USM
Tel: 04-9885081
E-mail: nooraizedfiza@unimap.edu.my

Miss Nurul Ikhamar Ibrahim
B.Eng. (Manufacturing Engineering) - UnMAP
B.Eng. (Manufacturing) - UTM
Tel: 04-9885086
E-mail: ikhmar@unimap.edu.my

Mrs. Roshaliza Hamidon
M.Sc. (Manufacturing Systems) - UPM
B.Eng. (Manufacturing) - UIA
Tel: 04-9885113
E-mail: roshaliza@unimap.edu.my

Miss Rozie Nani Ahmad
M.Eng. (Advanced Manufacturing Technology) - UTM
B.Eng. (Mechanical Engineering) - UTM
Tel: 04-9885009
E-mail: rozienani@unimap.edu.my

Mrs. Sakinah Zakaria
M.Sc. (Automation and Control Engineering) - Newcastle University, UK
B.Eng. (Electrical and Electronics Engineering) - Portsmouth University, UK
Tel: 04-9885017/04-9885139
E-mail: sakinahzakaria@unimap.edu.my

Mr. Shayfull Zamree Abd Rahim
M.Eng. (Advanced Manufacturing Tech.) - UTM
B.Eng. (Mechanical) - UTM
Tel: 04-9885127
E-mail: shayfull@unimap.edu.my

Mrs. Siti Aishah Adam
M.Sc. (Innovation & engineering Design) - UPM
B.Eng. (Manufacturing Eng. with Mgmt) - UIAM
Tel: 04-9885082
E-mail: aishahadam@unimap.edu.my
Miss Siti Norbahiyah Mohamad Badari
M.Sc (Manufacturing Eng.) - UIAM
B.Eng. (Manufacturing Eng.) - UIAM
Tel: 04-9885049
E-mail: norbahiyah@unimap.edu.my

Mr. Suhaimi Illias
M.Eng. (Mechanical Systems) -
Gunma University, Japan
B.Eng. (Mechanical) -
Ehime University, Japan
Tel: 04-9885029
E-mail: suhaimi@unimap.edu.my

Mrs. Ummi Noor Nazahiah Abdullah
M.Sc. (Innovation and Engineering Design) - UPM
B.Eng. (Manufacturing Eng. with Mgmt) - USM
Tel: 04-9851534/04-9885008
E-mail: nazahiah@unimap.edu.my

Mr. Zailani Zainal Abidin
M.Sc. (Manufacturing System) - UPM
B.Eng. (Manufacturing Hons - UniMAP
Dip. Mechanical (Manufacturing Eng.) - POLIMAS
Tel: 04-9885140
E-Mail: zailani@unimap.edu.my

TEACHING ENGINEER

Mr. Amarul Talip
B.Eng. (Electrical) - KUITTHO
Tel: 04-9885065
E-mail: amarul@unimap.edu.my

Miss Anis Abdul Aziz
B.Eng. (Manufacturing) Hons - UniMAP
Dip. (Manufacturing Technology) - POLIMAS
Tel: 04-9885060
E-mail: anisaziz@unimap.edu.my

Mrs. Kartini Alir
B.Eng. (Manufacturing Systems Eng.)
Hertfordshire University, UK
Tel: 04-9885075
E-mail: kartini_alir@unimap.edu.my

Mr. Leong Kean Wei
B.Eng. (Manufacturing Eng.)
Hons. - UniMAP
Dip. (Mechanical Eng. Manufacturing) - POLIMAS
Tel: 04-9885047
E-mail: kwleooong@unimap.edu.my

Mrs. Nor Zaiazmin Yahaya
B.Sc. (Mechanical Eng.) - Iowa State University, USA
Tel: 04-9885136
E-mail: zaiazmin@unimap.edu.my

Mrs. Marina Marzuki
B.Eng. (Manufacturing Eng. with Mgmt) - USM
Tel: 04-9885076
E-mail: marina@unimap.edu.my

Mr. Mohd. Hatta Musa
B.Eng. (Mechanical Eng.) - USM
Tel: 04-9885103
E-mail: hatta@unimap.edu.my

Mr. Mohd. Khairul Fadzly Abu Bakar
B.Eng. (Mechanical) - UTHM
Tel: 04-9885066
E-mail: fadzly@unimap.edu.my

Mr. Mohd. Nasir Mat Saad
B.Eng. (Mechanical) - USM
Tel: 04-9885115
E-mail: nasirsaad@unimap.edu.my

Mr. Mohd. Shuhidan Salleh
B.Eng. (Mechanical Eng.) - UiTM
Dip. (Mechatronics Eng.) - POLIMAS
E-mail: shuhidan@unimap.edu.my

Mr. Mohd. Syedi Imran Mohd Dawi
B.Eng. (Product Design Eng.)
Hons - UniMAP
Tel: 04-9885010
E-mail: syediimran@unimap.edu.my

Mr. Muhammad Khairy Md Naim
B.Eng. (Manufacturing) Hons - UniMAP
Tel: 04-9885031
E-mail: mkhairy@unimap.edu.my

Mrs. Noor Diyana Dahlan
B.Eng. (Manufacturing) Hons – UniMAP
Dip (Mechanical Engineering Technology) – Politeknik Sbrg Perai
Tel: 04-9885087
E-mail: diyanadahlan@unimap.edu.my

Mr. Radhwan Hussin
B.Eng. (Manufacturing) Hons - UniMAP
Dip (Mechanical Eng) - POLIMAS
Tel: 04-9885080
E-mail: radhwan@unimap.edu.my

Mrs. Rafizah Abdul Rashid
B.Eng. (CAD/CAM) - UM
Tel: 04-9885129
E-mail: raifizah@unimap.edu.my

Mrs. Shafizan Sharifuddin
M.Eng. (Manufacturing) - UM
B.Eng. (Manufacturing Eng. with Mgmt) - USM
Tel: 04-9885107
E-mail: izan@unimap.edu.my

Mrs. Shaliza Azreen Mustafa
M.Sc. (Mechanical Engineering) - USM
B.Industrial Technology (Quality control & Instrumentation) - USM
Tel: 04-9885107
E-mail: shalizaazreen@unimap.edu.my

Miss Suhaireza Md Esa
B.Eng. (Mechanical Industry) - UTM
Tel: 04-9885021
E-mail: suhaireza@unimap.edu.my
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Qualifications</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUTOR</td>
<td>Mr. Mohd Effendi Muhammad Suandi</td>
<td>Bachelor of Art & Design (Industrial Design) Hons - UiTM</td>
<td>Tel: 04-9885056 E-mail: effendi@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mrs. Norashiken Othman</td>
<td>M.Sc. (Innovation & Engineering Design) - UPM, Bac. Ind. Design – UPM</td>
<td>Tel: 04-9885062 E-mail: norashiken@unimap.edu.my</td>
</tr>
<tr>
<td>STUDY LEAVE</td>
<td>Lt. Ahmad Humaizi Hilmi</td>
<td>M.Eng. (Advanced Manufacturing Technology) - UTM</td>
<td>E-mail: humaizi@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Miss Atikah Hj Awang @ Mohd Ramli</td>
<td>M.Sc. (Manufacturing Systems Eng.) - Warwick University, UK</td>
<td>E-mail: atikah@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Azwan Iskandar Azmi</td>
<td>M.Eng. (Advanced Manufacturing Tech.) - UTM</td>
<td>E-mail: azwaniskandar@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Badrul Azmi Abdul Holed</td>
<td>Master. (Industrial Design) - University of Central England, UK</td>
<td>E-mail: badrul@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Lee Chang Chuan</td>
<td>M.Sc. (Mechanical & Material Eng.) - UKM</td>
<td>E-mail: yusmarizal@uniamp.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Mohd Zahiruddin Md Zain</td>
<td>M.Eng. Mech. (Manufacturing) - KUITTHO</td>
<td>E-mail: zahiruddin@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mrs. Noorhafiza Muhammad</td>
<td>M.Eng. (Manufacturing Systemc) - Coventry University, UK</td>
<td>E-mail: noorhafiza@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Wan Abdul Rahman Assyahid Wan Ibrahim</td>
<td>M.Eng. (Advanced Manufacturing Tech.) - UTM, B.Eng. (Mechanical Eng.) - UTM</td>
<td>E-mail: warawi@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Zulkifli Abdul Rashid</td>
<td>M.Sc. (Manufacturing Systems) - Warwick, UK</td>
<td>E-mail: zulkifli_rashid@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Mohd. Sazli Saad</td>
<td>M.Eng. (Mechatronics & Automatic Control) - UTM</td>
<td>E-mail: sazlisaad@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Syamsul Syahrun Awang @ Hashim</td>
<td>M.Eng. (Mechanical Systems Eng.) - Gunma University, Japan</td>
<td>E-mail: syamsul@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Muhamad Nasir Murad</td>
<td>M.Eng. Mech. (Manufacturing) - KUITTHO</td>
<td>E-mail: sazlisaad@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Mohd. Nazri Omar</td>
<td>M.Sc. (Ing.) Global Production Engineering - Technical University, Berlin</td>
<td>E-mail: nazriomar@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Miss Suhaila Hussain</td>
<td>M.Sc. (Advanced Mech Eng.) - Imperial College London, UK</td>
<td>E-mail: suhaila@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Muhamad Farizuan Rosli</td>
<td>Bachelor of Design Hons. (Industrial Design) - UPM</td>
<td>E-mail: aiman@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Mohd. Nazri Omar</td>
<td>M.Sc. (Ing.) Global Production Engineering - Technical University, Berlin</td>
<td>E-mail: nazriomar@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Muhamad Aiman Ahmad Fozi</td>
<td>Bachelor of Design Hons. (Industrial Design) - UPM</td>
<td>E-mail: aiman@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Narzrezal Abdul Razak</td>
<td>Diploma in Mechanical Engineering (Manufacturing) - Politeknik PD</td>
<td>E-mail: narzrezal@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Fazrul Izham Azizan</td>
<td>Cert. in Mechanical Eng. (Manufacturing) - POLIMAS</td>
<td>E-mail: fazrulizham@unimap.edu.my</td>
</tr>
<tr>
<td></td>
<td>Mr. Muhamad Nasir Murad</td>
<td>M.Eng. Mech. (Manufacturing) - KUITTHO</td>
<td>E-mail: sazlisaad@unimap.edu.my</td>
</tr>
</tbody>
</table>
Mr. Mazlan Mohamad Husin
Cert. in Mechanical Eng.
(Manufacturing) - POLIMAS
Tel: 04-9885110
E-mail: mazlanhusin@unimap.edu.my

Miss Misni Rosli
Cert. in Mechanical Eng.
(Automotive) - Politeknik KB
Tel: 04-9885151
E-mail: misni@unimap.edu.my

Mr. Mohd. Hazwan Hussin
Cert. in Mechanical Eng.
(Electronic) - Politeknik Perlis
Tel: 04-9885035
E-mail: mohdhazwan@unimap.edu.my

Mr. Mohd. Nazri Abdul Hamid
Cert. in Mechanical Eng.
(General) - POLIMAS
Tel: 04-9885083
E-mail: nazrihamid@unimap.edu.my

Mr. Mohd. Nazmi Mohammad Radzi
Cert. in Electrical Eng. & Electronic - Politeknik Perlis
Tel: 04-9885090
E-mail: mohdnazmi@unimap.edu.my

Mr. Mohd. Nazry Mat Nayan
Cert. in Mechanical Eng. (Logy) - POLIMAS
Tel: 04-9885090
E-mail: mohdnazry@unimap.edu.my

Mr. Mohd. Nurhilmi Mohamad
Cert. in Electrics Technology (Service) - Kolej Komuniti Arau
Tel: 04-9885063
E-mail: mnurhilmi@unimap.edu.my

Mr. Mohd. Shukri Nordin
Cert. in Mechanical Eng.
(Manufacturing) – Politeknik JB
Tel: 04-9885032
E-mail: shukri@unimap.edu.my

Mr. Muhamad Fairuz Abdul Karim
Cert. in Mechanical Eng.
(Genral) - POLIMAS
Tel: 04-9885084
E-mail: fairuzkarim@unimap.edu.my

Mr. Rashid Ramli
Cert. in Mechanical Engineering – Politeknik Muadzam Shah
Tel: 04-9885058
E-mail: rashid@unimap.edu.my

Mr. Roszi Anuar Hamid
Cert. in Mechanical Eng.
(Manufacturing) - POLIMAS
Tel: 04-9885094
E-mail: roszianuar@unimap.edu.my

Mr. Suhelmi Wi @ Senawi
Cert. in Mechanics Tech. (Electronics Industry) - ITTAR, Penang
Tel: 04-9885001
E-mail: suhelmi@unimap.edu.my

Mr. Wan Ahmad Aznir Idrus
Cert. in CNC - ILP, Kangar
Cert. in Electrical Eng. - ITTAR, Penang
Tel: 04-9885059
E-mail: ahmadaznir@unimap.edu.my

Mr. Syed Amir Fatir Syed Akhir
Assistant Registrar
B.Mgnt.(Human Resource) Hons - UUM
Tel: 04-9885033
Faks: 04-9885034
E-mail: syedamir@unimap.edu.my

Miss Fariza Ileyna Mansor
Dip. (Secretarial Science) - PTSS
Tel: 04-9885035
E-mail: ileyna@unimap.edu.my

Mr. Azmi Azit
Administrative Assistant
(Clerical/Operational)
Tel: 04-9885040
E-mail: azmi@unimap.edu.my

Mr. Mohamad Zaki Kerya
Administrative Assistant
(Clerical/Operational)
Tel: 04-9885035
E-mail: mohamadzaki@unimap.edu.my

Mrs. Shela Shariff
Administrative Assistant
(Clerical/Operational)
Tel: 04-9885041
E-mail: shela@unimap.edu.my

Mr. Amir Hazreen Mohamad Hadzi
General Office Assistant
E-mail: amirhazreen@unimap.edu.my

Mr. Syed Amir Fatir Syed Akhir
Assistant Registrar
B.Mgnt.(Human Resource) Hons - UUM
Tel: 04-9885033
Faks: 04-9885034
E-mail: syedamir@unimap.edu.my
PROGRAMME OBJECTIVES FOR MANUFACTURING ENGINEERING PROGRAMME

PROGRAMME EDUCATION OBJECTIVE (PEO)

Programme Objectives 1
Graduates who are leaders in the field of Manufacturing Engineering or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objectives 4
Graduates who contribute towards research and development.

Programme Objectives 5
Graduates who are entrepreneurial engineers.

PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Manufacturing Engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices.</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
Curriculum Structure for Bachelor of Engineering (Honours) (Manufacturing Engineering)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>ENGINEERING CORE (97)</td>
<td>EPT103/3</td>
<td>EPT161/3</td>
<td>EPT241/3</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Electrical Technology</td>
<td>Solid Mechanics I</td>
<td>Fluid Mechanics I</td>
</tr>
<tr>
<td></td>
<td>Engineering Drawing</td>
<td>EPT112/3</td>
<td>EPT212/3</td>
<td>EPT235/3</td>
</tr>
<tr>
<td></td>
<td>Statics</td>
<td>Dynamics</td>
<td>Thermodynamics</td>
<td>Solid Mechanics II</td>
</tr>
<tr>
<td></td>
<td>Engineering Workshop</td>
<td>Engineering Workshop</td>
<td>Engineering Workshop</td>
<td>Engineering Workshop</td>
</tr>
<tr>
<td></td>
<td>NON-ENGINEERING (23)</td>
<td>EQT101/3</td>
<td>EQT102/3</td>
<td>EQT203/3</td>
</tr>
<tr>
<td></td>
<td>Computer Programming</td>
<td>EUT122/2</td>
<td>EUT123/2</td>
<td>EUT124/2</td>
</tr>
<tr>
<td></td>
<td>REQUIRED UNIVERSITY (15)</td>
<td>EUW233/2</td>
<td>EUW212/2</td>
<td>EUW224/2</td>
</tr>
<tr>
<td></td>
<td>Islamic & Asian Civilisations & University Malay Language & EUW35/2 Ethnic Relations & EUWXXX/1 Co-Curriculum Subjects</td>
<td>University English</td>
<td>University Entrepreneurship & EUWXXX/2 Option Subjects</td>
<td>Engineering Entrepreneurship & EUWXXX/2 Option Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units for Graduation: 135

Elective: EPT487 Manufacturing Automation; EPT486 Ergonomics
PROGRAMME OBJECTIVES FOR MANUFACTURING ENGINEERING PROGRAMME

PROGRAMME EDUCATION OBJECTIVE (PEO)

Programme Objectives 1
Graduates who are leaders in the field of Manufacturing Engineering or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objectives 4
Graduates who contribute towards research and development.

Programme Objectives 5
Graduates who are entrepreneurial engineers.

PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Manufacturing Engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)

(PRODUCT DESIGN ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>I</td>
<td>EPT103/3 Materials</td>
<td>EPT161/3 Electrical Technology</td>
<td>EPT241/3 Solid Mechanics I</td>
<td>EPT228/3 Fluid Mechanics I</td>
</tr>
<tr>
<td></td>
<td>EPT152/2 Engineering Drawing</td>
<td>EPT112/3 Statics</td>
<td>EPT212/3 Dynamics</td>
<td>EPT235/3 Thermo dynamics</td>
</tr>
<tr>
<td></td>
<td>EPT191/2 Workshop and Studio Practice</td>
<td>EPT184/3 Manufacturing Technology</td>
<td>EPT261/3 Electronics</td>
<td>EPT262/2 Measurement and Instrumentation System</td>
</tr>
<tr>
<td></td>
<td>EPT162/2 Computer Programming</td>
<td>EUT122/2 Skills and Technology in Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW233/2 Islamic & Asian Civilisations & EUW410/2 University Malay Language & EUW235/2 Ethnic Relations</td>
<td>EUWXXX/1 Co-Curriculum Subjects</td>
<td>EUW212/2 University English</td>
<td>EUW224/2 Engineering Entrepreneurship & EUWXXX/2 Option Subjects</td>
</tr>
</tbody>
</table>

| | | | | | | | |
| 120 | 18 | 18 | 16 | 18 | 17 | 17 | 4 | 13 | 14 |

Total Units for Graduation 135

Elective: EPT497 New Product Development; EPT498 Green Product
EPT 181/2 CAD/CAM

Course Synopsis
This course introduces the principles and application of CAD/CAM systems. It enables students to understand the theory, concept, and application of CAD/CAM as used in the industry. Students will use CAD software to illustrate parts, and CAM software to convert CAD files into numerical control (NC) codes.

References

EPT 182/3 MANUFACTURING PROCESS I

Course Synopsis
This course introduces students to the knowledge, understanding and synthesis of the basic processes in manufacturing such as metal-casting processes, forming & shaping processes, and joining processes. In the beginning of the course, the fundamental of materials will be given, before they learn the processes in manufacturing. Students will undergo practical sessions in the workshop/lab to help in a better understanding of the subject matter.

References

EPT 103/3 MATERIALS

Course Synopsis
This course introduces students to the engineering materials fundamentals including the engineering materials application, atomic bonding, crystal structure, mechanical and physical properties, corrosion mechanism, microstructural analysis, phase diagram, ferrous and non-ferrous alloys, polymer and advance materials.

References

EPT 152/2 ENGINEERING DRAWING

Course Synopsis
This course introduces fundamental of engineering drawing, engineering graphic as language, basic drafting skill, applied geometry, shape description, basic dimensioning, tolerance, detail and assembly drawing based on BS308 part 1 and part 2.

References
EPT 183/2
ENGINEERING WORKSHOP

Course Synopsis

In the first part of this course, safety aspects in the workshop will be covered, followed by fundamental measurement techniques, and use of measuring equipment such as vernier calliper, micrometer, etc. Then, various basic cutting processes, e.g. filing, chiselling, sawing, etc. will be covered. Students will be introduced to fabrication, sheet metal forming, and welding, which consists of introduction to basic knowledge of various cutting methods and hand tools, such as file, hacksaw, chisel, etc. The practices or lab sessions consist of explanations on safety practices in the workshop, fitting work, sheet metal forming, and welding processes.

The second part of the course introduces the fundamentals of measurement techniques followed by milling, lathe and grinding operations which consist of introduction to basic knowledge of various cutting tools, parts of machines and their functions, machine operations, and numerous calculations involving the operations. Students will practice conventional machining process used in the industry to transform raw material to finished products. Practical work will help students gain effective understanding.

References

EPT 191/2
WORKSHOP AND STUDIO PRACTICE

Course Synopsis

This course will expose the student in practicality and developing skills regarding design processes and model/prototype fabrication. Hence, topics will be focusing to product sketching techniques and model/prototype fabrication. Through the assignment given, the knowledge and skills that need by a product designer will be developing. Furthermore, this course will expose the student by studio/workshop sessions through product design assignments which emphasis on creative thinking and the production of visual in the context of design. The student will be expose trough design assignment about the concepts and methods in designing; elements of good quality product; included concepts sketching and presentation drawing; model making; understanding of engineering drawing and design documentation.

References

4. Arie Wallert, erma Hermens, Maria F.J. Historical Painting Techniques, Materials, and Studio Practice Practice: Preprints of a Symposium, University of Leiden, the Netherlands, 26-29 June 1995 Peek Getty Publications.

EPT 162/2
COMPUTER PROGRAMMING

Course Synopsis

EPT 161/3
ELECTRICAL TECHNOLOGY

Course Synopsis
This course is intended to provide students with clear understanding of the concepts and principles of the DC and AC circuits, basic principles of three phase ac circuits, and electromagnetism. The students will also gain an understanding of the basic operating principles of a transformer, calculate induced e.m.f, equivalent resistance, reactance and impedance, losses and transformer efficiency. At the end of the chapter, the students will understand the principles of DC Machines and three phase induction motors and do some basic calculation of losses and efficiency of DC Machines.

References

EPT 112/3
STATICS

Course Synopsis
This course introduces introduction to mechanics, force vector, equilibrium of particle, force system resultants, equilibrium of rigid body, structural analysis, friction, centroids and center of gravity.

References

EPT 184/3
MANUFACTURING TECHNOLOGY

Course Synopsis
This course introduces students to industrial manufacturing technology used for converting raw materials into finished products. Various processes, machinery, and operations will be examined with emphasis placed on understanding engineering materials and processing parameters that influence design considerations, product quality and production costs.

References
EPT 192/3
PRODUCT INNOVATION

Course Synopsis
This course starts with basic ideas about inventing which define what invention and innovation constitute. It then describes the differences between invention and non-invention criterion, areas, and invention types. In conjunction with technology, the innovation itself cannot be separated from some fundamental principles of technology such as energies and their forms, storage of energy and some general concepts that have been used over and over again in originating, developing and applying many devices and systems such as the area principles. This course also focuses on the invention process to produce novel design concepts and reverse engineering processes applied so as to improve current design concepts. As the course go on, topics on intellectual properties such as patents, trade mark, trade secret and copyright are discussed. These are important legislative documents to protect novel ideas. In addition, strategies on how to generate profits from the invention and innovation activities are covered. Presentation techniques and ethics are also studied using graphic software and materials such as panels and mock-up.

References

EPT 241/3
SOLID MECHANICS I

Course Synopsis
This course covers deformation and internal forces that exist in a solid body when subjected to external loads. The concepts of stress, strain, and constitutive behaviors are discussed. Students are taught to solve problems of loading on solid bodies under axial, torsion, bending and buckling loading conditions. The concepts of principal stresses and strains are used to solve problems involving multi-directional loadings. Students use Mohr’s Circle to solve the problems.

References

EPT 212/3
DYNAMICS

Course Synopsis
In this course, students use the concepts of mechanics in dynamic conditions. The course will be presented in two parts: kinematics, which treats only the geometric aspects of motion, and kinetics, which is the analysis of the forces causing the motion. To develop these principles, student learn the dynamics of a particle first, followed by topics in rigid-body dynamics in two and then three dimensions. Emphasis will be given on the kinematics and kinetics of a particle, planar kinematics and kinetics of a rigid body, three dimension kinematics and kinetics of a rigid body.

References
EPT 261/3
ELECTRONICS

Course Synopsis
In this course, students learn about electronic devices which include analog and digital devices. In analog devices, the topics include introduction to semiconductor, PN junction, diodes, zener diodes, bipolar junction transistor (BJT) and operational amplifier. In digital devices, the topics include introduction to binary number system, Boolean Algebra, logic gates and logic circuits, Boolean function, combinational logic circuits, sequential logic circuit and counters. Students will be exposed to the basics of electronics, operation concept, and analysis methods including the usage of electronic devices in the industry.

References

EPT 281/3
INDUSTRIAL ENGINEERING

Course Synopsis
This course covers processes of design of industrial engineering systems, improvement and the installation of an integrated system of people, materials, equipment, information, energy and economics. It involves knowledge of mathematical and economical sciences with the principles and methods of engineering analysis. The main objective is to solve industrial engineering problems in order to increase labour and manufacturing productivity of industrial systems. Tools which make the most efficient solutions will be focused in this course. Other topics include structure of industrial systems, labour productivity, manufacturing productivity, industrial management and plant layout.

References

EPT 282/3
MANUFACTURING PROCESS II

Course Synopsis
This course enables students to understand the use of conventional and modern machining processes. The course begins with an overview to both processes, followed by analyses of machine tools. This is followed by CNC programming, CNC processes, tools and control systems. Programming codes which include G, N, and M codes will be taught and student will perform geometry machining using the machines. Students will solve problems related with the programming, design and operations of CNC machines. At the end of the course, students present their individual/group projects related to the targeted outcomes.

References
EPT 283/2
COMPUTER AIDED DESIGN

Course Synopsis
This course focuses on developing students’ skills on the basis of 3D modeling and its application in engineering by using 3D Modeling software. It includes details on 3D modeling followed by producing 2D drawing, assembly drawing, exploded drawing, surface modeling, rendering and animation.

References
4. Cornelius T. Leondes, Cornelius Leondes, Computer-Aided Design,
6. Thomas Strothotte (Author), Stefan Schlechtweg (Author) Non-Photorealistic

EPT 228/3
FLUIDS MECHANICS I

Course Synopsis
In Fluid Mechanics I, students apply basic properties of fluid and concepts of dimensional analysis on fluid flow measurement, fluid friction in pipes, and flow over immersed bodies. This course also covers analysis of hydrodynamical flow fields. It emphasizes the analysis and importance of boundary layer, ideal, and compressible flow in practical engineering applications. The course will also provide the analysis of flow through fluid machines such as pumps and turbines. At the end of the course, students should be able to apply the theory to solve problems related to flow of fluids.

References

EPT 235/3
THERMODYNAMICS

Course Synopsis
In this course, basic concepts in thermodynamic laws used in engineering applications such as steam power plant, air-conditioning & refrigeration systems, and internal combustion engine will be covered. The course emphasizes the study of energy sources and conservation through its concept and definition. By the end of semester, students should be able to analyse mixture and the performance of compressors and heat exchangers.

References
EPT 262/2
MEASUREMENT AND INSTRUMENTATION SYSTEM

Course Synopsis

This course introduces students to the basic principles in measurement systems including various sensing methods, instrument types and their characteristics, display and recording elements, and their applications in the measurement of temperature, pressure, force, level, and displacement, among many others.

References

EPT 293/3
ENGINEERING PRODUCT DESIGN I

Course Synopsis

This course aims to develop an understanding of customer's needs and techniques to interpret data into product conceptual solutions that have market value. Students will learn the appropriate engineering approaches and methods to analyse user needs in conjunction with engineering science principles such as materials, statics, dynamics, solid, fluid and thermodynamics to produce conceptual solutions that fulfill customer needs. The course also focuses on the manipulation of 3D CAD based software to construct product conceptual solutions.

References

EPT 312/3
VIBRATION AND MECHANICS OF MACHINES

Course Synopsis

This course is designed so that students learn the application of concepts in mechanics (statics and dynamics) to solve real world mechanical engineering problems pertaining to various machines that include belt and pulley systems, gears, flywheels and gyroscopes. Student will also learn the methods of balancing rotating masses and parts of a combustion engine. The concepts of vibration with respect to one-degree-of-freedom are also studied. At the end of this course, students should be able to solve problems related to various mechanical systems. In addition, they should be able to evaluate analytically the parameters of components of various machines under study.

References

EPT 335
APPLIED THERMODYNAMICS

Course Synopsis

Applied Thermodynamics is designed to enhance and extend students' ability to apply thermodynamic principles, especially the first and second laws of thermodynamics, and the laws of conservation of mass,
momentum and energy, to industrial systems. It covers the broad application of the theory to many engineering applications, and emphasizes the analysis of energy transfers during power generation, heating, air-conditioning and refrigeration processes. At the end of the course, students should be able to apply relevant thermodynamic and conservation principles and perform calculations to evaluate the performance of gas and vapor power cycles, various compressors, and the performance of air-conditioning, refrigeration and heat pump cycles. Students should also be able to perform thermodynamic analyses of gas mixtures and gas-vapor mixtures.

References

EPT 341/3 SOLID MECHANICS II

Course Synopsis

This course reviews the earlier course of Solid Mechanics I regarding axial load, torsion, bending and shear. Students will be exposed to problems of thin-walled tubes having closed cross sections and bending deformation of a straight member. The course also discusses the solution of problems where several internal loads occur simultaneously on a member’s cross section. The deflection of beam problems is taught using various methods including the application of energy methods. This energy method covers the principle of conservation of energy, virtual work and Castigliano’s theorem.

References

EPT 361/4 INSTRUMENTATION AND CONTROL

Course Synopsis

This course prepares students with the knowledge and skill in instrumentation and control for instrumentation systems and control engineering in manufacturing industries. Students study basic concepts of instrumentation systems, elements, transducers, instrumentation system analysis, design criteria for measuring instrument and suitable materials. This course will enhance students’ knowledge of the principals and usage of instrumentation in manufacturing industries. Students will also learn control system concepts and methods commonly used in the industries. They will be able to apply instrumentation and control techniques in manufacturing environments. In addition, they will also learn how to analyze and design simple controllers.

References

EPT 363/3 AUTOMATIC CONTROL

Course Synopsis

In this course, control systems which involve mathematical models of control system, characteristic of feedback control system, performance
of feedback control system, stability of feedback control system, Root-Locus Method, and design of feedback control systems will be covered.

References

EPT 381/3 TOOLS AND DIE DESIGN

Course Synopsis

This course gives an understanding to students about the concepts and principles of Tool & Die and Mould design applications. It is divided into two sections. The first section deals with Tool & Die design with include the calculation and analysis of part and die using CATIA CAD software. The second section will cover the mould design application with includes calculation and analysis using MouldFlow Software. Students need to carry out projects individually or in a team, and present the project at the end of semester.

References

EPT 383/3 AUTOMATION AND ROBOTICS

Course Synopsis

This course introduces industrial automation and robotic which have been used in the industries today. Its covers topics regarding automation systems such as pneumatic, hydraulic, programmable logic control (PLC), material handling, Automated Storage/Retrieval System (ASRS), Automated Guided Vehicles (AGV), Flexible Manufacturing System (FMS), Automated Production Lines, and Automated Assembly Lines. Students learn how to design pneumatic and hydraulic circuits manually before using programmable logic control (PLC) with FluidSIM software in the lab. The course covers an explanation of the classification of robots, robot systems, end-of-arm tooling, sensors, robot safety and robot utilisation in the industries. In addition, Combination of Modular Production System (MPS) with Automation and Robotic Systems are also discussed.

References

4. Khairur Rijal Jamaludin, Reka Bentuk Sistem Kuasa Bendalir, Universiti Teknologi Malaysia., 2004

EPT 385/3 METROLOGY AND QUALITY CONTROL

Course Synopsis

This course gives an understanding about the concepts and techniques in dimensional metrology and quality control and the relationship between these fields of knowledge. Students will be exposed to dimensional metrology equipment such as the equipment used in linear measurement, angular measurement, surface measurement and coordinate measuring machine. In addition, students learn about quality control tools (7 old and new tools), sampling and reliability of engineering systems. Practical work will help students gain effective understanding.

References

EPT 384/3
ADVANCED MANUFACTURING TECHNOLOGY

Course Synopsis

This course introduces students to advanced manufacturing technology. The content of the course covers advanced manufacturing technology such as Electrochemical Machining (ECM), EBM, LBM, micro-machining and nano-fabrications. It also covers process selections and economics of advanced machining processes. It gives students the basic skills in analysing advanced manufacturing technology and the necessary knowledge to operate and manufacture a particular product. At the end of the course, students will present a proposal to manufacture a particular component.

References

EPT 393/3
ENGINEERING PRODUCT DESIGN II

Course Synopsis

In the Product Design Engineering 1 course, students learnt all engineering design phases, focusing on the first two phases which are Problem Formulation and Conceptual Design. In contrast, the course Product Design Engineering 2 focuses on the next phase of Engineering Design, which is Configuration Design. Students will firstly study Product Architecture and then continue to look on the details of Design for X; such as Design for Manufacturing and Assembly, Design for Reliability and Safety, Design for Quality and Robustness, and Design for Environment. At the end of this course, students are usually required to complete a case study.

References

EPT 394/3
PRODUCT ERGONOMIC AND SAFETY

Course Synopsis

This course addresses ergonomics knowledge in product design. It explains the application of anthropometrics data in products, equipment and tool designs. Students will learn about fundamental knowledge of ergonomics, its applications in design and basic assessment tools to analyse design problems. The course also exposes students to specific considerations, needs or requirement for special populations such as the elderly or the disabled in the design. It also looks into ergonomic hazard, safety analysis & prevention, and the product safety.

References

References

EPT 314/3
MACHINES MECHANISM

Course Synopsis

The course offers students knowledge of basic 3D rigid body kinematics, balancing on rotation mass, gear systems and follower, mechanism-kinematics diagramme, movement ability, position analysis, velocity and acceleration analysis. At the end of this course, students should be able to solve problems related to various mechanical systems. In addition, they should be able to evaluate analytically the parameters of components of various machines under study.

References

EPT 364/3
MECHATRONICS

Course Synopsis

The aim of this course is to deliver the fundamental knowledge of mechatronics system. Topics covered include input device, output device, signal conditioning, input and output interfacing, networking, and fault finding analysis. Students will also learn how to design and analyse mechatronics systems using Programmable logic Control (PLC).

References

EPT 395/3
ENGINEERING PRODUCT DESIGN III

Course Synopsis

In this course, students will increase their skills and knowledge in designing new products. They will produce drawings using Geometry Dimensioning and Tolerance symbols in real industrial environment. Through this course, students will perform analysis on the tolerance of 3D models before they produce a prototype for a new product. The course also focuses on the methods in designing plastic products and analyses of plastic material flow inside plastic injection mould to produce plastic products. Students learn to apply and integrate knowledge and understanding of engineering science disciplines to support engineering design activities. In designing activities, students will study reliability testing for the new product development. Lastly, students will study the laws and the actual steps to acquire patents for a new product.

References

EPT 403/3
ADVANCED MATERIALS

Course Synopsis

In this course, students learn about recent developments of various classes of advanced materials used in applications such as aerospace, automotive, biomedical and electronic industries. It will emphasise on the important properties exhibited by metallic, polymeric, ceramics and composite materials that make them selected for high-end and advanced applications. The physical and mechanical properties of the various classes of advanced materials (superalloys, titanium and aluminium alloys, intermetallic and biomaterials) will be detailed, and so will the processing techniques associated with producing these materials. The course will also cover the latest advanced materials being developed such as nanomaterials, shape memory alloys and other functional materials. At the end of the course students should be able to gain understanding of the physical and mechanical properties of advanced materials and apply the knowledge to select suitable materials for a given engineering application.

References

EPT 403/3
ADVANCED MATERIALS

Course Synopsis

This course incorporates elements covered in an earlier course, Machine Components Design. It completes the overall understanding mechanical system design. Topics covered include: design for installation, limit and matching, impervious, hydraulic system and pneumatic, automation, movement control. The simulation system design such as ADAMS will be introduced. Lectures and projects will cover problem solving methodology in the design, analysis, and synthesis of mechanical and thermal systems. This serves as a foundation for dealing with broad engineering projects. Emphasis will be given on creative thinking in the engineering design process in projects involving optimal conversion of resources.

References

EPT 427/3
PNEUMATICS AND HYDRAULICS SYSTEM DESIGN

Course Synopsis

This course discusses basic pneumatics, sensors, electro-pneumatics, and hydraulic technologies that are related to industrial applications. Students will study the construction and design of circuits by means of examples and exercises.

References

1. Pepperl & Fuchs, training Package Sensoric, Peppel & Fuchs, 2005

EPT 424/2
HEAT TRANSFER

Course Synopsis

The main objective of this course is to enable student to understand the concepts of conduction, convection and radiation which form the basics of heat transfer. Student will also perform theoretical calculations such as thermal conductivity, heat loss, and other important theories.
References

EPT 484/2 LEAN MANUFACTURING

Course Synopsis

This course offers students to understand the concept of Lean Manufacturing. Students learn about lean philosophies and techniques used in lean manufacturing. They will also learn Value Stream Mapping (VSM) which is the heart of Lean Manufacturing solution. Lab sessions will enable students to use lean tools properly through case studies given using simulation software. At the end of this course, students are expected to be able to apply and analyse lean tools to solve appropriate problems incurred on the manufacturing shop floor.

References

EPT 485/2 PRODUCTION PLANNING AND CONTROL

Course Synopsis

In this course, students will understand issues related to production management. At the end of the course students are able to use the appropriate tools and techniques in manufacturing and production lines. The course includes Introduction to Production Management, Demand Forecasting, Capacity Planning, Process Selection & Facility Layout, Aggregate Planning, Inventory management, Materials Requirement Planning (MRP), Production Scheduling and Supply Chain Management.

References

5. Operations Management By C. Donald J. Waters, Donald Waters, Kogan Page Publishers, 1999

EPT 495/2 OPERATIONAL RESEARCH

Course Synopsis

The course is divided into deterministic and stochastic categories used in the engineering field. Both categories involve modelling of problems using tools such as simplex, tasking and transportation. The course also covers operational problems which essentially involve probability such as queuing line and simulation models. All these methods aim to arrive at an optimum solution.

References

CAREER OPPORTUNITIES

- Process Engineer
- Quality Engineer
- Industry Safety Engineer
- Maintenance Engineer
- Production Design Engineer
- Process Design Engineer
- Research & Development Engineer (R&D)
- Academician
- Consultancy
Programmes Offered:

- Diploma in Metallurgical Engineering
- Bachelor of Engineering (Materials Engineering)
- Bachelor of Engineering (Metallurgical Engineering)
- Bachelor of Engineering (Polymer Engineering)
- M.Sc (Materials Engineering)
- M.Sc (Polymer Engineering) (Mix Mode)
- Ph.D.
Introduction

Materials Engineering, Metallurgical Engineering and Polymer Engineering is related to the structure and properties of materials in engineering applications. Materials Metallurgical and Polymer Engineers are responsible for designing, producing, inspecting and testing of engineering materials such as metal alloys, semiconductors, superconductors, ceramics, polymers, plastics and composites. All three programs emphasizes learning and practical courses in all courses offered.

In accordance with the requirements of industrial and Vision 2020, a high need for professionals in Materials Engineering, Metallurgical Engineering and Polymer Engineering is required in various industries that use advanced manufacturing technology and production. Thus, this programs aims to produce human resources professional at the proficient and have strong knowledge in the field of Materials Engineering, Metallurgical Engineering and Polymer Engineering.
LECTURERS

Brig. Jen. Dato’ Prof. Dr. Kamarudin Hussin,
Ph.D., M.Sc., B.Sc. (USM),
Tel: 04-9798001
E-mail: kamarudin@unimap.edu.my

Prof. Dr. Shamsul Baharin Jamaludin,
Ph.D.(Leeds), M.Sc., B.App.Sc. (USM),
Tel: 04-9798610
E-mail: sbaharin@unimap.edu.my

Prof. Dr. Mohd Noor Ahmad,
Ph.D. (Uni. New Castle, UK), BSc.
(UNI. Gajah Mada, Indonesia),
Dip.in Education (UM)
Tel: 04-9798897
E-mail: mohdnoor@unimap.edu.my

Prof. Madya Dr. Azmi Bin Rahmat
Ph.D (Nottingham Uni. U.K), M.Sc
(Ranfield Uni. U.K) B.Sc (USM)
Tel :
E-mail : azmirahmat@unimap.edu.my

Prof. Madya Dr. Salmah Husseinsyah,
Ph.D., M.Sc. (USM), B.Sc. (Universiti
Sumatera Utara)
Tel: 04-9798612
E-mail: irsalmah@unimap.edu.my

Prof. Madya Dr. Abdullah Bin Chik
Ph.D (UPM), M.Sc (USM),B.Sc
(Lamar Uni. USA),
Tel : 04-9798612
E-mail : abdullahchik@unimap.edu.my

Prof. Madya Ir. Hj. Mohd Ichwan
Nasution,
M.Sc (Kiev-Ukraina), B.Eng. (Kiev-Ukraina)
Tel: 04-9798613
E-mail: ichwan@unimap.edu.my

Dr. Suryadiansyah
Ph.D., M.Sc. (USM), B.Sc.
(Universiti Sumatera Utara)
Tel: 04-9798660
E-mail: suryadian@unimap.edu.my

Dr. Md Fazlul Bari
Ph.D. (USM), M.Sc., B.Sc.
(University Of Rajshahi, Bangladesh)
Tel: 04-9798608
E-mail: fazlul@unimap.edu.my

Dr. Supri Abdul Ghani,
Ph.D. (USM), M.Sc.
(Institut Teknologi Bandung),
B.Sc. (Universiti Sumatera Utara),
Tel: 04-9798611
E-mail: supri@unimap.edu.my

Dr. Mohd Nazree Derman,
Ph.D., M.Sc., B.Eng. (USM),
Tel: 04-9798659
E-mail: nazree@unimap.edu.my

Dr. Khairel Rafezi Ahmad,
Ph.D., M.Sc., B.Eng. (USM),
Tel: 04-9798190 / 8624
E-mail: rafezi@unimap.edu.my

Dr. Khairul Raina Che Halin,
Ph.D (U.K.M), M.Sc, B.Eng (Manchester Universiti)
Tel: 04-9798605
E-mail: rafiez@unimap.edu.my

Dr. Hakimah Osman
Ph. D., M.Sc, B.Tech. (USM),
Tel: 04-9798605
E-mail: hakimah@unimap.edu.my

Dr. Irwana Nainggolan
Ph.D., M.Sc., (UKM), B.Sc. (USU, Indonesia)
Tel: 04-9898940
E-mail: irwana@unimap.edu.my

Dr. Mazlee Mohd Noor,
Ph.D., (UniMAP) M.Sc., B.Eng. (USM),
Dip.Eng. (UTM),
Tel: 04-9798619
E-mail: mazlee@unimap.edu.my

Dr. Banjuraizah Johar,
Ph.D., M.Sc., B.Eng. (USM),
E-mail: banjuraizah@unimap.edu.my

Dr. Ong Hui Lin
Ph.D., M.Sc., B.Tech. (USM)
Tel: 012-7118069
E-mail: hlong@unimap.edu.my

Dr. Yeoh Cheow Keat,
Ph.D., M.Sc. (USM), B.Eng. (UTM),
Tel: 04-9798933
E-mail: ckyeoh@unimap.edu.my

Dr. Teh Pei Leng,
Ph.D., M.Sc., B.Tech. (USM),
Tel: 04-9798920
E-mail: plteh@unimap.edu.my

Dr. Ho Li Ngee
Ph.D. (Oita Uni. Japan), BSc. Hons.(USM)
Tel : 04-979 7933
E-mail : lnho@unimap.edu.my

Dr. Luqman Musa,
MSc. B.Sc. (USM)
Tel: 04-9798949
E-mail: luqman@unimap.edu.my

Dr. Dewi Suriyani Che Halin,
Ph.D.(UKM), M.Sc.,B.Eng. (USM)
Tel: 04-9798154
E-mail: dewisuriyani@unimap.edu.my

Dr. Du Ngoc Uy Lan
Ph.D. (USM, Kyoto Uni.), M.Sc. (USM),
B.Eng. (HCMUT)
Tel : 04-9798921
E-mail : uylan@unimap.edu.my
Dr. Nik Noriman Bin Zulkepli
PhD. M.Sc., B.Eng. (USM),
Tel: 04-9798154
E-mail: niknoriman@unimap.edu.my

Dr. Mst. Noorzahan Begum
Ph.D (UniMAP), M.Sc., B.Sc.
(University of Rajshahi, Bangladesh)
Tel: 04-9798929
E-mail: noorzahan@unimap.edu.my

Dr. Firuz Bt Zainuddin
Ph.D (UKM), M.Sc (USM), B.Eng,
Tel: 04-9798668
email: firuz@unimap.edu.my

Dr Maizatulnisa Othman
Ph.D (UPM), M.Sc, B.Sc, Diploma (UiTM),
Tel: 04-9798154
email: maizatulnisa@unimap.edu.my

Mr. Suhardy Daud,
M.Sc., B.Sc.Ed (UTM),
Tel: 04-9798191/ 8609
E-mail: suhardy@unimap.edu.my

Mr. Mohd Zaheruddin Kasmuin,
M.Sc., B.Eng. (USM),
Tel: 04-9798857
E-mail: zaheruddin@unimap.edu.my

Mr. Faizul Che Pa,
M.Sc., B.Eng. (USM),
Tel: 04-979 8668
E-mail: faizul@unimap.edu.my

Mr. Ruhiyuddin Mohd Zaki,
M.Sc., B.Eng. (USM),
Tel: 04-9798622
E-mail: ruhiyuddin@unimap.edu.my

Mrs. Sri Asliza Md. Amin,
M.Sc., B.Eng., (USM),
Tel: 04-9798856
E-mail: sriasliza@unimap.edu.my

Mr. Mohd Nazry Salleh,
M.Sc. (UniMAP), B.Sc. (UKM),
Tel: 04-9798607
E-mail: nazry@unimap.edu.my

Dr. Shahrizam Saad
M.Sc., B.Eng., (USM)
Tel: 04-9798657
E-mail: shahrizam@unimap.edu.my

Mrs. Siti Hawa Bt. Mohd Salleh
MSc (UKM), B.Eng (UniMAP)
Tel: 04-979 8855
E-mail: sitihawa@unimap.edu.my

Mrs. Haiza Bt. Haroon
M.Sc., B.Eng (USM)
Tel: 04-979 8605
E-mail: haizaharoon@unimap.edu.my

Mrs. Salmie Suhana Bt. Che Abdullah
MSc., B.Eng., (Tottori Uni. Japan)
Tel: 04-979 8918
E-mail: salmie@unimap.edu.my

Mrs. Nor Azura Bt. Abdul Rahim
MSc., B.Eng., (USM)
Tel: 04-976 6296
E-mail: norazura@unimap.edu.my

Miss Juyana A Wahab
MSc., B.Eng. (UniMAP)
Tel: 04-976 6296
E-mail: nuraqmar@unimap.edu.my

Mrs. Jalilah Abdul Jalil
MSc., B.Eng., (Nara Institute of Science and Technology, Japan), B.Eng., (Kyoto Institute of Technology, Japan)
Tel: 04-9798154
E-mail: jalilahjalil@unimap.edu.my

Mrs. Aimi Nurliyana Hashim
MSc., B.Eng., (UniMAP)
Tel: 04-9798154
E-mail: aimiliyana@unimap.edu.my
Mrs. Noorina Hidayu Jamil
MSc., B.Eng., (USM)
Tel: 04-9798154
E-mail: noorinahidayu@unimap.edu.my

Mr. Murizam Darus,
MSc. (UniMAP), B.Eng. (UKM)
Tel: 04-9798858
E-mail: murizam@unimap.edu.my

Mr. Azmi Kamardin,
B.Sc. (University of Washington, USA)
Tel: 04-9855498
E-mail: azmikamardin@unimap.edu.my

Mrs. Noor Mariamadzliza Mohd Nan,
B.Eng. (USM)
Tel: 04-9855426
E-mail: maria@unimap.edu.my

Mrs. Noor Azira Mohd Noor
MSc. (UniMAP), B.Eng. (UKM)
Tel: 04-9855482
E-mail: noorazira@unimap.edu.my

Mr. Mohammad Tamizi Selimin,
B.Eng. (UiTM), Dip. Eng (UiTM),
Tel: 04-9798859
E-mail: tamizi@unimap.edu.my

Mr. Mohd Tajuddin Mohd Idris,
Electromechanical (PUO)
Tel: 04-9855426
E-mail: tajuddin@unimap.edu.my

Mr. Lokman Hakim Ibrahim,
B.Eng. (UniMAP),
Tel: 04-9798859,
E-mail: lokmanh@unimap.edu.my

Mr. Ismail Ibrahim,
MSc. (UniMAP), B.Eng (UniMAP),
Dip. Eng. Mechanical (POLIMAS)
Tel: 04-9798648
E-mail: ismailibrahim@unimap.edu.my

Mr. Muhamad Hafiz bin Zan @ Hazizi
B.Eng. (UTHM)
Tel: 04-9798858
E-mail: hafizhazizi@unimap.edu.my

Mr. Wan Mohd Arif Wan Ibrahim,
B.Eng. (USM),
Tel: 04-9798848
E-mail: wanarif@unimap.edu.my

Mr. Ahmad Azreem Azmi
B.Eng. (UniMAP),
Tel: 04-9798648
E-mail: azreem@unimap.edu.my

Miss Liyana Bt. Jamaludin
B.Eng. (UniMAP)
Tel: 04-9798154
Email: liyanajamaludin@unimap.edu.my

Mohamed Faisol Bin Mohamed Nor
B.Eng(UniMAP), Dip.Eng(PoliPD),
Cert.Eng(PoliSAS)
Tel: 04-9798154
Email: faisol@unimap.edu.my

Mr. Saiful Nizwan Bin Mhd Salleh
B.Eng. (UniMAP),
Tel: 04-9798648
E-mail: nizwan@unimap.edu.my

Mr. Muhamad Qauyum Zawawi Bin Ahamad Suffin
B.Eng. (UniMAP),
Tel: 04-9798648
E-mail: qauyum@unimap.edu.my

Prof. Madya Che Mohd Ruzaidi Ghazali,
M.Sc., B. Tech., (USM), MPRIM,
Tel: 04-9798614
E-mail: ruzaidi@unimap.edu.my

Prof. Madya Ir. Mohabattul Zaman S NS Bukhari,
M.Sc. (UPM), B.Eng. (USM),
E-mail: mzaman@unimap.edu.my

Mr. Shaiful Rizam Shamsudin,
M.Sc., B.Sc. (UKM),
Tel: 04-9798663,
E-mail: shaiful@unimap.edu.my

Mr. Syed Nuzul Fadzli Syed Adam,
M.Sc. (USM), B.Sc. (UKM),
Tel: 04-9798606
E-mail: syed.nuzul@unimap.edu.my

Mr. Mohammad Tamizi Selimin,
B.Eng. (UiTM), Dip. Eng (UiTM),
Tel: 04-9798858
E-mail: tamizi@unimap.edu.my

Mr. Mohd Mustafa Al Bakri Abdullah,
M.Sc., B.Eng. (USM),
Tel: 04-9798657 / 2233
E-mail: mustafa_albakri@unimap.edu.my

Mr. Mohd Fitri Mohamad Wahid,
M.Eng., B.Eng. (Ehime, Japan),
E-mail: fitri@unimap.edu.my

Mr. Muhammad Asri Idris,
M.Eng., B.Eng. (Ehime, Japan),
E-mail: asri@unimap.edu.my
Mrs. Nor Azwin Ahad, M.Sc., B.Eng. (USM),
E-mail: norazwin@unimap.edu.my

Mrs. Norsuria Mahmed, M.Sc., B.Eng. (USM),
E-mail: norsuria@unimap.edu.my

Mrs. Nur Maizatul Shima Adzali, M.Sc. (Sheffield), B.Eng. (USM),
Tel: 04-9798616
E-mail: shima@unimap.edu.my

Mrs. Noraziana Parimin, M.Sc., B.Eng. (USM),
E-mail: noraziana@unimap.edu.my

Mrs. Azlin Fazlina Osman, M.Sc., B.Eng. (USM),
E-mail: azlin@unimap.edu.my

Mrs. Kamrosni Abd Razak, B. Eng. (UKM),
E-mail: kamrosni@unimap.edu.my

TECHNICAL ASSISTANT

Mr. Chek Idrus Bin Omar,
Tel: 04-9798125
E-mail: idrus@unimap.edu.my

TECHNICIANS

Mr. Mohd Nasir Bin Haji Ibrahim,
Tel: 04-9798602,
E-mail: nasir@unimap.edu.my

Mr. Ku Hasrin Ku Bin Abdul Rahman,
Tel: 04-9798600,
E-mail: kuhasrin@unimap.edu.my

Mr. Norzaidi Bin Zainol,
Tel: 04-9798600,
E-mail: norzaidi@unimap.edu.my

Mr. Ahmad Hadzrul Bin Iqwan Jalaludin,
Tel: 04-9798603,
E-mail: hadzrul@unimap.edu.my

Mr. Azmi Bin Aziz,
Tel: 04-9798125,
E-mail: azmiaziz@unimap.edu.my

Mr. Rosmawadi Bin Othman,
Tel: 04-9798125,
E-mail: rosmawadi@unimap.edu.my

Mr. Mohamad Safwan Bin Isa,
Tel: 04-9798600
E-mail: safwan@unimap.edu.my

Mr. Mohd Mujahidin Bin Suhaimi
Tel: Tel: 04-9798125,
E-mail: mujahidin@unimap.edu.my

Mr. Adi Ashraf Bin Ziulkifli,
Administrative Assistant (Clerical/Operational)
Tel: 04-9798198
E-mail: adi@unimap.edu.my

Mr. Sazali Bin Saad,
Administrative Assistant (Clerical/Operational)
Tel: 04-9798195
E-mail: sazali@unimap.edu.my

Mr. Hasmizul Bin Hashim,
General office Assistant
Tel: 04-9798198
E-mail: hasmizul@unimap.edu.my

Mr. Mohd Aizat Bin Abdul Rahman,
Tel: 04-9798600
E-mail: mohdaizat@unimap.edu.my

FOREMAN K1

Mr. Mohd Aizat Bin Abdul Rahman,
Tel: 04-9798600
E-mail: mohdaizat@unimap.edu.my

ADMINISTRATIVE STAFF

Mrs. Nursakinah Bt. Abdul Karim,
Assistant Registrar
Tel: 04-9798193
E-mail: sakinah@unimap.edu.my

Miss Norasmira Bt. Othman,
Administrative Assistant (Finance)
Tel: 04-9798154
E-mail: norasmira@unimap.edu.my

Mrs. Azilawati Bt. Abdullah,
Administrative Assistant (Clerical/Operational)
Tel: 04-9798197
E-mail: azilawati@unimap.edu.my
PROGRAMME EDUCATIONAL OBJECTIVES FOR MATERIALS ENGINEERING PROGRAMME.

PROGRAMME OBJECTIVES FOR MATERIALS ENGINEERING PROGRAMME

Programme Objectives 1
Graduates who are leaders in the field of materials engineering or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

Programme Outcomes For Materials Engineering Programme.

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Manufacturing Engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS)
(MATERIALS ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>EBT151/3 Engineering Drawing</td>
<td>EBT109/3 Quality Control</td>
<td>EBT207/4 Materials Structure & Properties</td>
<td>EBT254/3 Transportation Phenomenon in Materials Processing</td>
</tr>
<tr>
<td></td>
<td>EKT150/3 Computer Programming</td>
<td>EPT112/3 Statics</td>
<td>EBT252/4 Strength of Materials</td>
<td>EBT222/4 Fundamentals of Ceramics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EQT203/3 Engineering Mathematics III</td>
</tr>
<tr>
<td>NON ENG. (23)</td>
<td>EUT122/2 Skill & Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED UNIVERSITY (15)</td>
<td>EUWXXX/2 Option Subject</td>
<td>EUW410/2 University Malay Language</td>
<td>EUW212/2 University English</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>EUW322/2 Thinking Skill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAMME EDUCATIONAL OBJECTIVES FOR METALLURGICAL ENGINEERING PROGRAMME.

Programme Objectives 1
Graduates who are leaders in the field of materials engineering or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

Programme Outcomes For Metallurgical Engineering Programme.

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Manufacturing Engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
<tr>
<td>YEAR</td>
<td>FIRST</td>
<td>SECOND</td>
<td>THIRD</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT150/3 Computer Programming</td>
<td>EPT112/3 Statics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQT101/3 Engineering Mathematics I</td>
<td>EQT102/3 Engineering Mathematics II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUT122/2 Skill & Technology in Communication</td>
<td>EQT203/3 Engineering Mathematics III</td>
</tr>
<tr>
<td>Non Engineering</td>
<td>EUWXXX/2 Option Subject</td>
<td>EUW410/2 University Malay Language</td>
<td>EUW212/2 University English</td>
</tr>
<tr>
<td>Required University</td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>EUW322/2 Thinking Skill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>
PROGRAMME EDUCATIONAL OBJECTIVES FOR POLYMER ENGINEERING PROGRAMME.

Programme Objectives 1
Graduates who are leaders in the field of materials engineering or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

Programme Outcomes For Polymer Engineering Programme.

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in Manufacturing Engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS) (POLYMER ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EKT150/3 Computer Programming</td>
<td>EBT 106/4 Introduction to Polymer</td>
<td>EBT232/4 Polymer Synthesis</td>
<td>EBT 235/3 Structure & Polymer Properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EBT105/4 Organic Chemistry</td>
<td>ECT112/3 Engineering Skills</td>
<td>EBT 238/3 Physical Chemistry</td>
<td>EBT271/3 Engineering Statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
<td>EBT239/4 Thermo dynamic in Polymer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUWXXX/2 Option Subject</td>
<td>EUW 410/2 Bahasa Melayu Universiti</td>
<td>EUW212/2 Bahasa Inggeris Universiti</td>
<td>EUW224/2 Keusahawanan Kejuruteraan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUWXXX/1 Co-Curriculum</td>
<td>EUW322/2 Kemahiran Berfikir</td>
<td>EUW235/2 Hubungan Etnik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Total Units for Graduation 135

Elective: EBT 433/3 Polymer Adhesive & Coating; EBT434/3 Environmental Friendly Polymer
EBT 105/4
ORGANIC CHEMISTRY

Course Synopsis

This course is developed to introduce the basic concepts of organic chemistry, chemical structures and reactions, to familiar with mechanism concepts of reactions and to understand the theoretical and conceptual background of organic chemistry.

References

EBT 109/3
QUALITY CONTROL

Course Synopsis

References

EBT 106/4
INTRODUCTION TO POLYMER

Course Synopsis

The aim of this course is to enable the students to learn the concepts of polymer classification, identification, properties and their application in polymer engineering.

References

EBT 151/3
ENGINEERING DRAWING

Course Synopsis

References

EBT 207/4
MATERIALS STRUCTURE & PROPERTIES

Course Synopsis

This course will introduce student to historical perspective, materials science and engineering, materials classification. Atomic structure: fundamental concepts, electron in atoms, atomic number and mass, atomic structure with periodic table. Atomic bonding in solids: bonding forces and energies, primary interatomic bonds, secondary bonding or Van de Waals bonding, molecules. Crystal structure: fundamental concepts, unit cells, metallic crystal structures, bulk density, polymorphism, allotropy crystal systems, crystallographic directions, crystallographic planes, linear and planar atomic densities, close-packed crystal structure. Crystalline and Non Crystalline Materials - Single crystals, polycrystalline materials, anisotropy, microstructure specimen preparation, optical microscope, x-ray diffraction and its application; determination of crystal structure, non-crystalline solids. Imperfection in Solids - Point defects in metals, point defects in ceramic, impurities in solids, defects in polymer, Dislocations (linear defects), interfacial defects, bulk or volume defect, atomic vibrations. Introduction to Diffusion - Diffusion mechanism, steady state diffusion, non steady-state diffusion, factors that influence diffusion, other diffusion paths, diffusion in ionic materials and polymer.

EBT 211/4
PHYSICAL METALLURGY

Course Synopsis

This course will introduce student to Differentiate between process or extractive metallurgy and physical metallurgy. General characteristic of metals, physical and mechanical properties of metals, atomic structure and bonding of metals. Phase transformation concepts in metals. Phase stability, categories of phase transformation, and kinetics of phase transformation. Solidification Process - Process of solidification and two energy involved in solidification process; distinguish between equiaxed and columnar grains. Imperfections in Solid - Imperfection in solid metals and deformation mechanism for metals (edge and screw dislocation, plastic and elastic deformation). Slip: concept of slip, dislocations, twins, and their

References

role in plastic deformation of single crystal. Critical slip system in FCC, BCC and HCP single crystal. Resolved shear stress by using Schmid Law.

Brief Introduction to Phase Diagram - Binary isomorphous system and binary eutectic system, phase diagram with intermediate phase or compound. Iron-iron carbide phase diagram, microstructure development in Fe-C alloy. Basic concept, solid state reaction kinetics, multiphase transformation, microstructure changes, and Fe-C properties. **Introduction to IT Diagram** - Isothermal transformation diagram (IT) and continuous cooling transformation (CCT) diagram.

References

EBT 213/4 EXTRACTIVE METALLURGY I

Course Synopsis

References

EBT 222/4
FUNDAMENTALS OF CERAMICS

Course Synopsis

References

EBT 232/4
POLYMER SYNTHESIS

Course Synopsis

This course is developed to introduce the basic concepts of synthesis polymer, the use of chemical structures and reaction schemes. Familiarity with mechanistic concepts. Understanding the theoretical and conceptual background of synthesis polymer.

References

EBT 233/4
PLASTIC MATERIALS

Course Synopsis
This course is to enable the students to describe the concepts of plastic materials; differentiate structure/property relationship of plastic materials and provide some ideas on plastic material selection principles, testing and characterization.

References

EBT 235/3
STRUCTURE AND POLYMER PROPERTIES

Course Synopsis
This course is offered to provide knowledge on principles and concept of structure/property relationship of polymeric materials. This includes the understanding on concepts of viscoelasticity, transition phenomena, mechanical and thermal properties of polymers.

References

EBT 251/3
ENGINEERING MATERIALS CHEMISTRY

Course Synopsis
Introduction to Thermodynamics - First law of thermodynamics, expansion and contraction of work, heat capacity, thermochemistry and its application in metallurgy. Second Law of Thermodynamics - Differentiate entropy function, cyclic process, several relations of thermodynamics which involving Gibbs Free Energy, relationship between equilibrium constant and temperature in reaction. Reaction Kinetics - Effect of reactants and products concentration, determination of order and velocity constant of reaction, effect of temperature for reaction, theory of absolute reaction rates for catalyst, diffusion in solid state. Electrochemistry - Electrolytes, electrolytic conduction, electrode potentials, galvanic cell, calculation of e.m.f. and cell potential, reduction and oxidation potential, standard electrode potential series. Interface Phenomenon - Surface energy and surface tensions, interfacial energy except gas/liquid interface, interfacial of three phases, absorption and colloid.

References
EBT 252/4
STRENGTH OF MATERIALS

Course Synopsis

References

EBT 253/3
ANALYTICAL CHEMISTRY

Course Synopsis
The main purpose of the Course is to provide students with a strong theoretical and practical grounding in the principles and practices of Analytical Chemistry. Basically student will learn Analytical objective, Stoichiometric Calculations, General Concept of Equilibrium, Gravimetric Analysis, Complexometric Titrations, Precipitation Reactions and Titrations, Redox and Potentiometric Titrations, Chromatographic methods and Environmental Analysis. Student will undertake Analytical Chemistry Laboratory for helping student to further develop analytical skills.

References

EBT 254/3
TRANSPORTATION PHENOMENON IN MATERIALS PROCESSING

Course Synopsis
Heat Transfer - Fourier’s law and thermal conductivity, thermal conductivity of gases, thermal conductivity of solids, thermal conductivity of liquids, thermal conductivity of bulk materials, heat transfer and the energy equation, quenching heat transfer coefficient, heat transfer coefficient in forging. Solidification of Metals - Solidification in sand moulds, solidification in metal moulds, continuous casting, crystal growth. Radiation Heat Transfer - Basic characteristic, the black radiator and emissivity, the energy distribution and the emissive power, gray bodies and adsorptivity, radiation combine with convection, radiation from gases. Fick’s Law and Diffusion in Materials - Definition of fluxes, Fick’s first law, diffusion in solids, diffusion under composition gradient effect, Darken’s equation, diffusion based on temperature in solids, diffusion in ceramic materials, diffusion in semiconductor materials, diffusion in liquids, diffusion in gases. Diffusion in Solids - Steady state diffusion experiments, microelectronic diffusion processing, homogenization of alloys, formation of surface layers. Mass Transfer in Fluid Systems - Diffusion through a stagnant gas film, diffusion in moving gas stream, the mass transfer coefficient, mass transfer in chemical vapor deposition. Interphase Mass Transfer - Two-resistance mass transfer theory, mixed control in gas-solid reactions, iron carbonization.
with surface reaction and diffusion as control factor, transportation in gas phase and diffusion as control factor, silicon oxidation, alloys vaporizing during melting.

References

EBT 303/3
PROCESS CONTROL

Course Synopsis

Basic concept for process control system, continuous and batch control. Application of computer software is extended in order to implement control algorithm for selected processes. Instrumentation selection is introduced for process control. Managing and implementing project. Designing and implementing process control.

EBT 311/4
MECHANICAL METALLURGY

Course Synopsis

This course is designed to introduce the students various aspects of Mechanical Metallurgy such as elastic plastic behaviour, stress concept, tensile deformation of ductile metal, ductile and brittle behaviour, elastic stress-strain relations, Mohr’circle of stress, stress tensor, calculation of stresses from elastic strain, strain energy, stress concentration, finite element method. Elements of the theory of plasticity such as flow curve, true stress-strain, Von Mises yielding criterion, maximum shear stress or Tresca criterion. Plastic Deformation of Single Crystals such as concept of crystal geometry, lattice defects, deformation by slip, slip in a perfect lattice, slip by dislocation movement, critical resolved shear stress for slip, deformation by twinning, stacking faults. Dislocation theory;

References

EBT 312/3
ENGINEERING FLUID MECHANICS

Course Synopsis
Course will be concentrate with fluid properties, fluid classification and force types in fluids. Thus, students will be learning about fluid properties in two different conditions, static and dynamic condition. Student also will learn momentum principles including basic equations for controlled system and volume, and then basic equations in differential form. The students will see in fluid application in flow topic in pipes and turbo-machine. The course also concentrates flow measurement aspect, like as tools and procedures which used in flow measurement.

References

EBT 313/4
METALLURGICAL CHARACTERIZATION

Course Synopsis
This course is designed to expose students the basic principles of metal characterization using LM, SEM, TEM as well as the principles of crystallography, metal texture, x-ray diffraction method and follow by spectroscopic technique and analytical.

References

EBT 314/3
METALLURGICAL THERMODYNAMICS

Course Synopsis

References

EBT 315/2 SURFACE ENGINEERING

Course Synopsis
This course is designed to provide an understanding of the role that surfaces play in materials behavior and to introduce the concepts of surface engineering and how surface engineering may be used to optimize a component’s performance and to introduce suitable techniques used to evaluate and characterize surfaces. Students will be exposed to a wide variety of topics such as common surface initiated engineering failures, physical and chemical techniques of surface protection, scope and application of conventional surface engineering techniques in engineering materials, advantages and limitation of conventional processes and testing/evaluation of surface properties.

References

EBT 316/3 METALLURGICAL DESIGN

Course Synopsis
Metallurgical design are created to incorporate engineering standards and realistic constrains, including most of the following considerations: economic, ethical, environmental and social. Focus on the design process, and the design method. The development of interdisciplinary teams is a high priority. The course integrates vertically and horizontally concepts from all areas of Metallurgical Engineering into a practical design project designed to train the students in the design practice. Fundamentals of the design process, specifications, decision-making, materials selection, materials process, experimental design, statistic process control and preliminary design are the focus. This course consists in the students playing the role of apprentices to design by teaming up with the interdisciplinary students in the s design projects.

References

EBT 322/3 POLYMER PROCESSING

Course Synopsis
This course is to provide a detailed introduction to the processing variety of materials polymer; rheology and flow melt in polymer, equipment and the important method of polymer processing, influence of factor-factor in polymer processing, defect in current processing and solve problem.

References
EBT 323/4 MATERIALS CHARACTERIZATION

Course Synopsis

This course is designed to expose students the basic principles of materials characterization using LM, SEM, TEM as well as the principles of crystallography, metal texture, x-ray diffraction method and follow by spectroscopic technique and analytical.

References

EBT 326/4 POLYMER PROPERTIES

Course Synopsis

The course is designed to introduce the students various properties of polymer such as thermoplastic, elastomer, thermoset, aspects of polymer physic including amorphous, semi-crystalline and crosslink of polymer, reinforcement of polymer products, mechanical properties, physical properties, characterization and analysis of polymer by using equipments.

References

EBT 333/4 RUBBER PROCESSING

Course Synopsis

This course to enhance knowledge, fundamental and significant concepts of rubber processing and formulation, different processing techniques, and testing of raw materials and finished products which are important in handling and controlling rubber processing machines.

References

EBT 334/4 POLYMER TESTING AND CHARACTERIZATION

Course Synopsis

This course introduce the basic concepts of testing and characterization, the usage of various polymer characterization equipments, understanding the analysis concept to identify and characterize the polymeric materials.

References

EBT 335/4 POLYMER BLEND AND ALLOYS

Course Synopsis

To introduce the knowledge of polymer blend and alloys. Promote an understanding on their properties relationship and provide knowledge on characterization, selection principles and application of polymer blend and alloys.

EBT 336/4 THERMOPLASTIC AND THERMOSET PROCESSING

Course Synopsis

This course is to provide a detailed introduction to the processing variety of materials polymer; rheology and flow melt in polymer, equipment and the important method of polymer processing, influence of factor-factor in polymer processing, defect in current processing and solve problem.

References

EBT 338/4 LATEX PROCESSING

Course Synopsis

To develop the basic knowledge and principles of latex technology, properties due to compounding, characterization and their application. This course is focus on latex compounding, production of latex concentrate and latex processing techniques.

References

EBT 351/3
ELECTRONIC MATERIALS ENGINEERING
Course Synopsis
Elementary materials science concept, electrical and thermal conduction in solid, elementary quantum physics, modern theory of solids, semiconductor, dielectric materials and insulator, magnetic properties and superconductivity, optical properties of materials. Electronic packaging: Fundamental of electronics packaging design, reliability, thermal management, single chip packaging and multichip packaging.

References

EBT 402/3
CORROSION ENGINEERING
Course Synopsis
Student will learn corrosion and surface engineering principles. Therefore, in this subject, the student will be learned electrochemistry, corrosion type, corrosion problems in industries. Electrochemistry principles, corrosion types, Pourbaix Diagram, Corrosion mechanism, kinetic and corrosion rate. Corrosion prevention methods, inhibitors, anodic and cathodic prevention, coating, stress corrosion cracking, selection and design, corrosion problems in industry and its solution.

References
EBT 411/3
ENGINEERING ALLOYS
Course Synopsis
This course was designed for students to study various types of engineering alloys including apparent microstructure, microstructural changes after heat treatment, heat-treatment design and applications of engineering alloys. To study metal matrix composites and biomaterials.

References

EBT 412/3
APPLIED METALLURGY
Course Synopsis

EBT 413/3
WELDING METALLURGY
Course Synopsis
This course is designed to introduce the students welding metallurgy principles and influencing factor in welding metallurgy selected. Therefore, students will exposure welding principle, metallurgical welding, welding types and welding mechanism, welding problems in varies industries and welding solutions.

References

EBT 414/3
ELECTRONIC METALLURGY
Course Synopsis
This course is design for student to review the microelectronic packaging hierarchy, 6 levels of packaging. First and level interconnection techniques in electronic packaging hierarchy. Die Bonding - Die bonding material and types of metals used. Properties of each metals involved. Function of metals in die bonding. Wire Bonding - Wire bonding technology and bonding techniques. Metallurgy of wire bonding and its characteristic. Intermetallic compound and metallic interface. Wire bond testing concepts. Bonding issues and reliability failures. Soldering Technology - Solder materials and microstructures. Flux
EBT 415/3
METALLURGICAL FORENSIC ANALYSIS
Course Synopsis
This course is designed to bridge the gap between theory and practice of forensic analysis in term of metallurgical aspect. It presents a very practical approach to forensic analysis for metallurgical engineering students who interested in understanding how knowledge of forensic analysis can lead to better productivity. The forensic analysis of product/component failures is also studied from beginning to end for certain case studies that normally happen in industries. The module also provides hands-on experience on alloy forensic analysis both at during laboratory work and on site visit. Student also exposed with technical report writing technique through mini project.

References

EBT 417/3
EXTRACTIVE METALLURGY II
Course Synopsis
This course is design to introduce general principle in extracting metal ore using pyrometallurgy route starting from ore treatment, drying, calcination, roasting and sintering. Type of furnace for smelting, including the detail process in smelting and refining will be explain. This course will provide student with the knowledge on the extraction of ferrous and non-ferrous metals and the impact of the pyrometallurgy on the environmental aspects.

References

EBT 421/3
ADVANCED MATERIALS ENGINEERING
Course Synopsis
Introduction to advanced material (nanostructured, synthethic alloy, ODS alloy), the fabrication process of those materials and its applications also characterization techniques by using TEM, SEM, XRD and BET methods.
EBT 422/3
COMPOSITE MATERIALS

Course Synopsis
This course is focusing on three major types of composite materials which are Ceramic Matrix Composite (CMC), Polymer Matrix Composite (PMC), and Metal Matrix Composite (MMC). Lectures cover on several important aspects of composite materials. This includes the introductions, classifications, properties, applications, and characterizations of composite materials, matrix and reinforcement phase, manufacturing and processing methods, types and influence of different reinforcement, inter-phase properties, mechanical and failure behavior, current and future potential applications of composite products. At the end of this course, students will have a comprehensive knowledge and well understanding regarding composite materials.

EBT 423/3
MATERIALS SELECTION AND DESIGN

Course Synopsis
This course builds an understanding of the inter-relationship between selection, materials processing, product design (material, design and processing) and product performance to develop a holistic approach to optimum selection of materials for engineering and industrial applications. The cause of product/component failure in metals, polymers, ceramics, composites and its alleviation is studied in detail through case studies. The module also provides hands-on testing experience of measuring important mechanical properties through mini project. The course content are as follows; general methodology of design, practical issues in engineering design, practical issues in engineering design, practical issues in engineering design, materials and component failures and selection for the specific purposes.

EBT 424/3
CONSTRUCTION MATERIALS

Course Synopsis
Introduction to the basic construction materials including raw material, physical and mechanical properties, processing and construction material designs. Also introduction to construction industries in Malaysia and involvement of others organization in supervising construction industry such as JKR, CIDB, IEM, PAM, Sirim, Kementerian Perumahan dan Kerajaan Tempatan dan Pusat Khidmat Kontraktor.

References

EBT 424/3
CONSTRUCTION MATERIALS

Course Synopsis
Introduction to the basic construction materials including raw material, physical and mechanical properties, processing and construction material designs. Also introduction to construction industries in Malaysia and involvement of others organization in supervising construction industry such as JKR, CIDB, IEM, PAM, Sirim, Kementerian Perumahan dan Kerajaan Tempatan dan Pusat Khidmat Kontraktor.

References

EBT 423/3
MATERIALS SELECTION AND DESIGN

Course Synopsis
This course builds an understanding of the inter-relationship between selection, materials processing, product design (material, design and processing) and product performance to develop a holistic approach to optimum selection of materials for engineering and industrial applications. The cause of product/component failure in metals, polymers, ceramics, composites and its alleviation is studied in detail through case studies. The module also provides hands-on testing experience of measuring important mechanical properties through mini project. The course content are as follows; general methodology of design, practical issues in engineering design, practical issues in engineering design, materials and component failures and selection for the specific purposes.

EBT 424/3
CONSTRUCTION MATERIALS

Course Synopsis
Introduction to the basic construction materials including raw material, physical and mechanical properties, processing and construction material designs. Also introduction to construction industries in Malaysia and involvement of others organization in supervising construction industry such as JKR, CIDB, IEM, PAM, Sirim, Kementerian Perumahan dan Kerajaan Tempatan dan Pusat Khidmat Kontraktor.

References
EBT 426/3
ADVANCED ELECTRONIC PACKAGING

Course Synopsis

In this course, students will be exposed to the following: Introduction to few types of electronic packages such as Ball Grid Array (BGA), Land Grid Array (LGA), Flip Chip (FC), Chip Scale Package (CSP), Wafer Level-Chip Scale Package (WL-CSP), Direct Chip Attach (DCA) etc. The advantages, disadvantages and challenges of each of the above packages towards meeting the needs of the nanometre range, needs of new devices and market will be shared. On further, the types of materials used such as polymer, ceramic, metal etc. will be shared. The existence of the thermo-mechanical stresses in electronic packages and the suitable design to overcome it will be shared. Electrical, mechanical, optical, physical properties etc. including the reliability of the electronic packages and its material will be shared. Thermal management: heat transfer theory, thermal & cooling design and thermal measurement methodology that involved the software and hardware will be shared. Soldering technology: alloy, soldering technique, microstructure, interconnection, no-clean solder, lead-free solder and lead-free plating will be shared. Interconnection technology: Surface Mount Technology (SMT), Multichip Module (MCM), MEMS, sequential build-up substrate technologies, which enable connection to high-density IC packages with unique trace/via interconnection constraint will be shared. Embedded passive and active components, which significantly reduce the product size that need advanced footprint creation, placement and analysis capabilities will also be shared. Wireless industry-based driven products such as custom ASICs, off-the-shelf ICs; mixed signal, RF, and digital circuitry on the same substrate, Systems-in-package (SiPs) integration of multiple interconnect and devices technologies on a single substrate and lastly stacked die with incredible design densities which pose challenges with localized wirebonding and trace routing density will be shared.

EBT 425/3
THERMOELECTRIC MATERIALS

Course Synopsis

This course is designed as an introduction to thermoelectric materials, concept that effect thermoelectric properties, materials selection and criteria of thermoelectric materials, analysis of thermoelectric.

References

EBT 427/3
TECHNICAL CERAMIC

Course Synopsis

This course is designed to expose the students to the technical ceramic and important aspect in advance

References

References

2. Lawrence H. Van Vlack diterjemahkan oleh Zainal Arifin Ahmad. Seramik Fizik Untuk Juruterma.

EBT 431/3
POLYMER ENGINEERING PRODUCT

Course Synopsis

To introduce the basic knowledge of polymer engineering product development. Promote an understanding on the concepts of engineering product and requirements. Provide knowledge on characterization, selection principles and application of polymer engineering product.

References

EBT 434/3
ENVIRONMENTAL FRIENDLY POLYMER

Course Synopsis

This course to introduce the knowledge of environment friendly polymer. Solve on their issues and understand the future needs of environmental polymers and create alternative ways for handling polymer issue such as degradable polymer and polymers recycling.

References

EBT 437/3
POLYMER COMPOSITES

Course Synopsis

This course will provide the concepts of polymer composites with several of fabrication techniques. This course also provides knowledge on fiber reinforcement of polymer matrices and their corresponding properties. The course includes the mechanics of composites and some composite testing methods.

EBT 435/3
POLYMER IN ELECTRONIC APPLICATION

Course Synopsis

To provide knowledge of polymer application in electronic industries. This includes an understanding on the concepts of fabrication processes of various polymers in this application. Provide knowledge on characterization and selection principles of polymer in electronic application.

References

EBT 440/3
DESIGN OF MOULD AND DIES

Course Synopsis

This course will provide basic principles in dies and moulds. The students will select different dies and moulds for difference processing and products and also familiarize with major components of injection molds and extrusion dies.

References

EBT 445/2 & EBT 446/4
FINAL YEAR PROJECT

Course Outcomes

• Able to plan and manage research project.
• Ability to apply theory that had been studied in research project.
• Able to write a technical report professionally.
• Able to present a research project professionally.

Course Synopsis

Research project will be conducted by the final year student. Objective of the project is to introduce the real problem in the field of engineering and familiarize the research method, problem solving, research publication and presentation of the effective results through thesis and seminar.
CAREER OPPORTUNITIES

Graduates with a Bachelor of Engineering (Materials Engineering), Bachelor of Engineering (Metallurgical Engineering) and Bachelor of Engineering (Polymer Engineering) has a broad employment prospects either in the private sector/industry, departments in government or statutory bodies.

Sectors that offer employment opportunities are as follows;

- Metal Industry.
- Polymer Industry.
- Electronic Packaging Industry.
- Materials Processing Industry.
- Automotive Industry.
- Service and Maintenance Industry.
- Engineering Fabrication Industry.
- Quality Control Department.
- Department of Engineering and Product Design.
- Research and Development Institution or Department.
- Institutions of Higher Education.
- Polytechnic / Community College.

The main careers for graduates in these THREE offered programs are as follows;

- Process Engineer.
- Production Engineer.
- Manufacturing Engineers.
- Quality Control Engineer (QC).
- Quality Assurance Engineer (QA).
- Failure Analysis Engineer.
- Product Development Engineer.
- Process Development Engineer.
- Materials Development Engineer.
- Metallurgical Engineers.
- Negotiation and Site Engineer.
- Research Officer.
- Lecturer for Polytechnic / College Community.
- Teaching Engineer.
Programmes Offered:

- Bachelor of Engineering (Honours) (Bioprocess Engineering)
- Bachelor of Engineering (Honours) (Biosystem Engineering)
- Bachelor of Chemical Engineering Technology (Honours) (Industrial Biotechnology)
- Master of Science (Bioprocess Engineering)
- Doctor of Philosophy
Introduction

The field of Bioprocess Engineering, Biosystem Engineering and Industrial Biotechnology plays a significant role in industrialized countries. Graduates in this field will gain knowledge in various aspects of sustainable engineering to equip themselves in exploring the nature of employment which is ever more challenging. The programmes offered are also responsible for nurturing the sense of responsibility towards the environment, bio-ethics and the ability to market related products.

Bioprocess Engineering includes industries in the area of nutrition, agro-processing, chemicals and pharmaceutical/nutraceuticals. Biosystem Engineering gives emphasis on systems and deliverables that are efficient and sustainable. While Industrial Biotechnology programme is specifically designed to equip students with a strong academic and practical training allowing them to acquire the relevant skills needed in biotechnology field.
Prof. Dr. Abdul Razak Shaari,
Ph.D. (Plant Physiology)(University of Wales, UK), B.Sc. (Botany)(UKM)
Tel : 04-9798851
Faks : 04-9798755
Email : razakshaari@unimap.edu.my

Prof. Ir. Dr. Ibni Hajar Rukunudin
PhD (Agricultural Engineering & Biosystem), Iowa State University, USA, Master of Applied Sciences (Food Engineering), UNSW, Australia,
B.Eng. (Agricultural), UPM
Tel : 04-9798026
Faks : 04-9798755
Email : ibnihajar@unimap.edu.my

Prof. Ir. Dr. Rezuwan Kamaruddin
PhD (Structural and Building Environmental Engineering), Cranfield University, UK,
MSc. (Structural Engineering), UPM,
B.Eng. (Agricultural Engineering), UPM
Tel : 04-9798822
Faks : 04-9798755
Email : rezuwan@unimap.edu.my

Prof. Dr. Zakaria Wahab
PhD, B.Sc (Crop Production & Physiology), Bristol
Tel : 04-9798592
Faks : 04-9798755
Email : zakariawahab@unimap.edu.my

Associate Professor Dr. Dachyar Arbain
PhD (Biotechnology)(Imperial College), Bsc. (Chemical) (Universiti Gajah Mada)
Tel : 04-9798845
Faks : 04-9798755
Email: dachyar@unimap.edu.my

Associate Professor Dr. Harbant Singh,
Tel : 04-9798754
Faks : 04-9798755
Email : othmanhashim@unimap.edu.my

Associate Professor Dr. Kassim Mohamad K Hashim,
PhD (Birmingham), M.Sc. (Birmingham), Bsc. (University of Baghdad)
Tel : 04-9798844
Faks : 04-9798755
Email: qassim@unimap.edu.my

Associate Professor Dr. Mahmad Nor Jaafar
PhD (KSU), M.Sc (KSU), B.Sc (LSU)
Tel : 04-9798826
Faks : 04-9798755
Email: mahmad@unimap.edu.my

Associate Professor Dr. Mohamed Zulkali Mohamed Daud
PhD. Chem. Eng (Birmingham) (UK)
Tel : 604-9798843
Faks : 04-9798755
Email: zulkali@unimap.edu.my

Associate Professor Dr. Mohammad Che Husain
PhD (Soil & Water Engineering), UK,
M.Sc. (Irrigation Water Management), UK,
B. Eng. (Agricultural), UPM
Faks : 04-9798755
Email : mohmmudhusain@unimap.edu.my

Associate Professor Dr. Othman Hashim
PhD. Lincoln College, University of Canterbury, Christchurch, New Zealand
Plant and Soil Science (Water Relations)
M.Agr. Dev. (Master in Agricultural Development): State University of Ghent, Ghent, Belgium
Agricultural Project Development, B.Agr.Sc.: Universitas Gadjah Mada, Jogjakarta, Indonesia
Agronomi, Fakultas Pertanian
Faks : 04-9798755
Email: othmanhashim@unimap.edu.my

Associate Professor Dr. Zainab Hamzah
PhD. (Soil & Plant Chemistry), University of Canterbury, New Zealand
M.Sc., State University of Ghent
B.Sc., State University of Ghent
Tel :04-9798512
Faks : 04-9798755
Email : zainab@unimap.edu.my

Dr. A.K.M Shafiqul Islam
PhD (USM), M.Sc. (USM)
Tel : 04-9798824
Faks : 04-9798755
Email: shafiqul@unimap.edu.my

Dr. Muhammad Syarhahil Ahmad,
Ph.D. (Organic) (University of Wisconsin @ Milwaukee WI, USA), B.Sc. (Chem. Eng) (Purdue University IN,USA)
Tel : 04-9798751/9798833
Faks : 04-9798755
Email : syarhabil@unimap.edu.my

Dr. Mohd Irfan Hatim Mohamed Dzahir,
PhD DIC (Imperial College, London),
M.Eng.Sc. (Malaya),
B.Eng. (UTM),
Tel: 04-9798838
Faks : 04-9798755
Email: irfan@unimap.edu.my

Dr. Zarina Zakaria
PhD (Biotechnology/Plant Tissue Culture) (USM), M.Sc. (Tropical Forest Resource Management)(UPM),
B.Sc(IIons. -Botany) (UM),
Tel : 04-9798820
Faks : 04-9798755
Email: zarinaz@unimap.edu.my

Mr. Hirun Azaman Ismail
MBA(Management)(Mississippi),
B.Sc. (Agricultural Eng.) (Mississippi)
Tel : 04-9794164
Faks : 04-9798755
Email: hirun@unimap.edu.my
Mr. Huzairy Hassan
M.Sc. (Chemical Engineering), USM,
B.Eng. (Biotechnology Engineering), UIA
Tel: 04-9798595/ 04-9764160
Faks : 04-9798755
Email : huzairyhassan@unimap.edu.my

Mrs. Khadijah Hanim Abdul Rahman,
M. Sc. (Biotechnology), USM,
B.Sc. (Biotechnology), UPM
Tel : 04-9768190
Faks : 04-9798755
Email: khadijahhanim@unimap.edu.my

Mr. Lee Boon Beng,
M. Eng. (Chemical), UMS,
B. Eng. (Chemical), UMS
Tel : 04-9798594
Faks : 04-9798755
Email: bblee@unimap.edu.my

Miss Mismisuraya Meor Ahmad
M. Sc. (Chemical Engineering), UKM
B. Eng. (Chemical Engineering), UKM
Tel : 04-9798585 /04-9764216
Faks : 04-9798755
Email: mismisuraya@unimap.edu.my

Mr. Mohamad Fahrurrazi Tompang
M. Sc. (Bioprocess Engineering), UIA,
B. Eng (Biotechnology), UIA
Tel : 04-9798590
Faks : 04-9798755
Email: fahrurrazi@unimap.edu.my

Miss Munira Mohamed Nazari
M. Eng. Mechanical Eng (UTM)
B. Eng. Manufacturing Engineering (UTE)
Tel : 04-9768192
Faks : 04-9798755
Email: muniranazari@unimap.edu.my

Mrs. Noor Shazliana Aizee Abidin
M. Sc. B. Sc & (Food Technology) USM
Tel :04-9798584
Faks : 04-9798755
Email: shazliana@unimap.edu.my

Miss Noorlnajwa Diyana Yaacob
M. Sc. (Bioprocess Engineering), UniMAP,
B.Sc (Biotechnology), UPM
Faks : 04-9798755
Email: noorlnajwa@unimap.edu.my

Miss Nor Fauziah Zainudin
M.Sc. (Chemical Engineering), USM
Email: norfauziah@unimap.edu.my

Mrs. Nurul Ain Harmiza Abdullah,
M.Sc. (Biotechnology), IIUM,
B.Eng (Biotechnology) IIUM
Email: ainharmiza@unimap.edu.my

Miss Rahimah Othman
M. Sc. (Chemical Engineering), UKM
B.Eng. (Chemical Engineering), UKM
Tel : 04-9798593
Faks : 04-9798755
Email: rahimah@unimap.edu.my

Miss Rozaini Abdullah
M. Ms. (Chemistry), UKM,
B. Sc. (Oleochemistry), UKM
Tel : 04-9763245
Faks : 04-9798755
Email: rozainiabdullah@unimap.edu.my

Miss Samera Samsuddin Sah
Diploma (Civil), UTM,
B.Eng (Civil), UTM,
M.Eng(Civil Hydraulics & Hydrology), UTM
Tel: 04-9798835
Email: samera@unimap.edu.my

Mrs. Siti Jamilah Hanim Mohd Yusof
M. Sc. (Chemical Engineering), UKM,
B.Eng (Chemical & Process), UKM
Tel : 04-9766320
Faks : 04-9798755
Email: siti@unimap.edu.my

Miss siti Kamariah Md Sa’at
M.Eng (Civil-Wastewater Eng),
B. Eng (Civil-Environmental) UTM
Faks : 04-9798755
Email : sitikamariah@unimap.edu.my

Mrs. Syazni Zainul Kamal
M.Sc. (Biotechnology),
B.Sc. (Biotechnology),
Tel :04-9798588
Faks : 04-9798755
Email : syazni@unimap.edu.my

Mr. Zulfakar Mokhtar,
M.Sc (Chem. Eng)(USM),
B.Eng (Chem.Eng)(USM),
Tel: 04-9798839
Faks : 04-9798755
Email: zulfakar@unimap.edu.my

STUDY LEAVE

Mr. Farizul Hafiz Kasim,
M.Eng., B.Eng (Chem. Eng)(UTM),
Tel: 04-9798841
Faks : 04-9798755
Email: farizul@unimap.edu.my

Mrs. Ku Syahidah Ku Ismail
M. Sc (Chem. Eng)(USM),
B. Eng. (Chem. Eng)(USM)
Tel : 04-9798832
Faks : 04-9798755
Email: kusyahidah@unimap.edu.my

Mrs. Nora Jullok,
M. Eng (Chem. Eng)(UTM),
B. Eng (Chem. Eng) (UTM),
Tel : 04-9798842
Faks : 04-9798755
Email: norajullok@unimap.edu.my

Miss Khairul Farihan Kasim
M.Sc. (Biotechnology)(USM),
B.sc (Biology – Botany)(USM)
Tel: 04-9764216
Faks : 04-9798755
Email: khairulfarihan@unimap.edu.my

Mr. Akmal Hadi Ma’Radzi,
B.Eng (Biotechnology and Applied Chemistry) (Fukui)
M.Eng (Biotechnology and Applied
Chemistry) (Fukui),
Tel: 04-9798849
Faks: 04-9798755
Email: akmalhadi@unimap.edu.my

Mrs. Alina Rahayu Mohamed,
M. Sc. (Chemistry)(UTM),
B. Sc. (Chemistry)(Sheffield),
Tel: 04-9798823
Faks: 04-9798755
Email: alina@unimap.edu.my

Mrs. Hafiza Shukor
M. Sc. (Chem. Eng),
B. Eng (Chem. Eng)(USM),
Tel: 04-9798753
Faks: 04-9798755
Email: hafizashukor@unimap.edu.my

Mrs. Hairul Nazirah Abdul Halim,
M. Sc. (Chem. Eng)(USM),
B. Eng (Chem. Eng)(USM),
Tel: 04-9798840
Faks: 04-9798755
Email: hairulnazirah@unimap.edu.my

Mr. Ahmad Anas Nagoor Gunny
B. Eng (Biochemistry) (UIAM)
Tel: 04-9798847
Faks: 04-9798755
Email: ahmadananas@unimap.edu.my

Mr. Ahmad Radi Wan Yaakub
B. Eng (Chem. Eng) (UTM)
Tel: 04-9798825
Faks: 04-9798755
Email: ahmadradi@unimap.edu.my

Mr. Hafizah Mohd Johar
B. Eng (Chem. Eng) (Minnesota)
Tel: 04-9798821
Faks: 04-9798755
Email: hafizahjohar@unimap.edu.my

Miss Khalilah Mohd Yusuff
B. Eng (Biochemical-Biotechnology)
Tel: 04-9798835
Faks: 04-9798755
Email: khalilah@unimap.edu.my

Mr. Mahfuz Affif Mohd Ruslan
B. Eng (Chem. Eng)(USM)
Tel: 04-9798848
Faks: 04-9798755
Email: mahfuz@unimap.edu.my

Mr. Md Nabil Ab Adzim Saifuddin,
B. Eng (Chem. Eng)(USM)
Tel: 04-9798834
Faks: 04-9798755
Email: mdnabil@unimap.edu.my

Mr. Mohd Qalani Che Kasim
B. Eng (Mechanical Eng)
Tel: 04-9798825
Faks: 04-9798755
Email: qalani@unimap.edu.my

Mr. Mohd Sani Jamailudin
B. Eng (Mechanical Eng)(UTM)
Tel: 04-9798825
Faks: 04-9798755
Email: mohdsani@unimap.edu.my

Mrs. Noor Hasyierah Mohd Salleh
B. Eng. (Biochemistry)(UKM)
Tel: 04-9798829
Faks: 04-9798755
Email: hasyierah@unimap.edu.my

Miss Nur Fizura Chin@Hashim
M. Sc. (Bioprocess Engineering), B. Eng
(Biology & Agriculture)
Tel: 04-9798835
Faks: 04-9798755
Email: fizura@unimap.edu.my

Mr. Razif Omar
B. Eng (Mechanical)
Tel: 04-9798836
Faks: 04-9798755
Email: razif@unimap.edu.my

Mrs. Sriyana Abdullah
B. Eng (Chem. Eng)(UM)
Tel: 04-9798827
Faks: 04-9798755
Email: sriyana@unimap.edu.my

SCIENCE OFFICER

Miss Rohazita Bahari
M. Sc., B. Sc. (UPM)
Tel: 04-9798830
Faks: 04-9798755
Email: rohazita@unimap.edu.my

TECHNICIANS

Mr. Mohammad Fahmi Ramli
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: rfahmi@unimap.edu.my

Mr. Muhammad Hafizal Fazil
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: mhafizal@unimap.edu.my

Mr. Huaidi Samsuddin
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: humaidi@unimap.edu.my

Mr. Mohamad Fauzi Mirdukhim@Mustapa
Certificate in Mechanical Engineering
Email: fauzimustapa@unimap.edu.my

Mr. Muhamad Fairul Sawal
Certificate in Mechanical Engineering
Email: fairulsawal@unimap.edu.my

Mr. Imran Ismail
Certificate in Computer & Support System
Email: imranismail@unimap.edu.my

VOCATIONAL TRAINING OFFICERS

Mr. Mohammad Fahmi Ramli
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: rfahmi@unimap.edu.my

Mr. Muhammad Hafizal Fazil
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: mhafizal@unimap.edu.my

Mr. Huaidi Samsuddin
Certificate in Mechanical Engineering
Faks: 04-9798755
Email: humaidi@unimap.edu.my

Mr. Mohamad Fauzi Mirdukhim@Mustapa
Certificate in Mechanical Engineering
Email: fauzimustapa@unimap.edu.my

Mr. Muhamad Fairul Sawal
Certificate in Mechanical Engineering
Email: fairulsawal@unimap.edu.my

Mr. Imran Ismail
Certificate in Computer & Support System
Email: imranismail@unimap.edu.my

Mrs. Sriyana Abdullah
B. Eng (Chem. Eng)(UM)
Tel: 04-9798827
Faks: 04-9798755
Email: sriyana@unimap.edu.my
Mrs. Salfarina Omar
Assistant Registrar
M.Sc (Management), B.Acct (UUM)
Tel: 04-9798752
Faks : 04-9798755
Email : salfarina@unimap.edu.my

Miss Julaila Helwa Hamdan
Administrative Assistant
(Clerical/Operation)
Tel : 04-9798653
Faks : 04-9798755
Email : julaila@unimap.edu.my

Miss Nur Hanisah Abdul Rahman
Administrative Assistant
(Clerical/Operation)
Tel : 04-9798652
Faks : 04-9798755
Email : hanisah@unimap.edu.my

Mr. Saiful Ammar Marzuki,
Administrative Assistant
(Clerical/Operation)
Tel : 04-9798653
Faks : 04-9798755
Email : ammar@unimap.edu.my

Mr. Rohisham Che Idrus,
General Office Assistant
Tel : 04-9798653
Faks : 04-9798755
Email : rohisham@unimap.edu.my
BACHELOR OF ENGINEERING (HONOURS) (BIOPROCESS ENGINEERING)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO) FOR BACHELOR OF ENGINEERING (BIOPROCESS ENGINEERING)

Programme Objectives 1
Graduates who are leaders in the field of chemical engineering in bioprocess or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

Programme Outcomes (PO) for Bachelor of Engineering (Bioprocess Engineering)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTNS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTNS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS) (BIOPROCESS ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>ERT 105/3 Electrical Technology</td>
<td>ECT 112/3 Engineering Skills</td>
<td>ERT 213/3 Process Instrumentations</td>
<td>ERT 206/4 Thermodynamics</td>
</tr>
<tr>
<td></td>
<td>EQT 203/3 Engineering Mathematics III</td>
<td>ERT 216/4 Heat & Mass Transfer</td>
<td>ERT 318/4 Unit Operations</td>
<td>ERT 319/3 Industrial Waste Treatment</td>
</tr>
<tr>
<td></td>
<td>ERT 106/3 Biochemistry</td>
<td>ERT107/3 Microbiology for Bioprocess Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERT 102/4 Organic Chemistry</td>
<td>ERT 108/3 Physical Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 410/2 University Malay Language</td>
<td>EUT 122/2 Skills & Technology in Communication</td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td>EUW 212/2 University English Language</td>
</tr>
<tr>
<td></td>
<td>EUW 1XX/1 Co-Curricular Activity</td>
<td>EUW 233/2 Islamic & Asian Civilizations</td>
<td>EUW XXX/2 Option Subjects</td>
<td>EUW 235/2 Ethnic Relation</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

University Required
- University English, Engineering Entrepreneurship, TITAS, Ethnic Relation, Thinking Skill, University Malay Language, Co-Curriculum, Option Subject

Total Units for Graduation
135

Elective:
- Elective I: ERT 426/3 Food Engineering, ERT427/3 Design of Experiments
- Elective II: ERT 429/3 Energy from Bioresources, ERT 430/3 Pharmaceutical Process Engineering
BACHELOR OF ENGINEERING (HONOURS)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO) FOR BACHELOR OF ENGINEERING (BIOSYSTEM ENGINEERING)

Programme Objectives 1
Graduates who are leaders in the field of mechanical engineering in biosystems or chosen field as demonstrated via career advancement.

Programme Objectives 2
Graduates who are members of and contribute to professional society.

Programme Objectives 3
Graduates who engage in life-long learning or continuous education opportunities.

Programme Objective 4
Graduates who contribute towards research and development.

Programme Objective 5
Graduates who are entrepreneurial engineers.

Program Outcomes (PO) for Bachelor of Engineering (Biosystem Engineering)

<table>
<thead>
<tr>
<th>NO</th>
<th>HEADING</th>
<th>AREA</th>
<th>PROPOSED PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Knowledge</td>
<td>C</td>
<td>Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in electronic engineering discipline.</td>
</tr>
<tr>
<td>2</td>
<td>Problem Analysis</td>
<td>C and/or CTPS</td>
<td>Ability to identify, formulate and solve electronic engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Design and Development of Solutions</td>
<td>C and/or CTPS</td>
<td>Ability to design a system, component or process to meet desired needs.</td>
</tr>
<tr>
<td>4</td>
<td>Investigation</td>
<td>P</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern Tool Usage</td>
<td>P</td>
<td>Ability to use techniques, skills and modern engineering tools necessary for engineering practices</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and Society</td>
<td>EM</td>
<td>Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and Sustainability</td>
<td>ES</td>
<td>Ability to understand entrepreneurship, the process of innovation and the need for sustainable development of the environment.</td>
</tr>
<tr>
<td>NO</td>
<td>HEADING</td>
<td>AREA</td>
<td>PROPOSED PROGRAMME OUTCOMES (PO)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>EM</td>
<td>Understanding of professional and ethical responsibilities and commitment to the society.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and Team-work</td>
<td>TS and LS</td>
<td>Ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>CS</td>
<td>Ability to communicate effectively.</td>
</tr>
<tr>
<td>11</td>
<td>Lifelong Learning</td>
<td>LL</td>
<td>Understanding of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>12</td>
<td>Project Management and Finance</td>
<td>ES</td>
<td>Demonstrate understanding of project management and finance principles</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR BACHELOR OF ENGINEERING (HONOURS) (BIOSYSTEM ENGINEERING)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>ENGINEERING CORE (94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERT 141/4 Fundamentals of Biosystems Engineering</td>
<td>ERT 146/3 Engineering Mechanics</td>
<td>ERT205/4 Fluid Mechanic Engineering</td>
<td>EQT 271/3 Engineering Statistics</td>
</tr>
<tr>
<td></td>
<td>EET103/4 Electrical Technology</td>
<td>ERT 249/4 Computer Aided Engineering Design For Biosystems Engineering</td>
<td>ERT 246/4 Hydrology And Water Resources Engineering</td>
<td>ERT 245/4 Heat And Mass Transfer In Biological Systems</td>
</tr>
<tr>
<td></td>
<td>ERT 247/4 Geomatic Engineering</td>
<td>ERT248/4 Thermo dynamics For Biosystems Engineering</td>
<td>ERT 350/3 Instrumentation, Measurement And Control In Biosystems</td>
<td>ERT 244/4 Energy And Power In Biosystems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERT 142/4 Engineering Properties of Biological Materials</td>
<td>ERT 351/3 Sustainable Agrosystems Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERT101/4 Biochemistry</td>
<td>ECT 112/3 Engineering Skills</td>
<td>EQT203/3 Engineering Mathematics III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQT101/3 Engineering Mathematics I</td>
<td>EKT120/4 Computer Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON ENGINEERING (26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERT144/4 Microbiology for Biosystems Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQT102/3 Engineering Mathematics II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUT122/2 Skills & Technology in Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED UNIVERSITY (15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 1XX/1 Co-Curricular Activity</td>
<td>EUW233/2 Islamic & Asian Civilizations</td>
<td>EUW 322/2 Thinking Skills</td>
<td>EUW XXX/2 Option Subject</td>
</tr>
<tr>
<td></td>
<td>EUW 410/2 University Malay Language</td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td>EUW 212/2 University English Language</td>
<td>EUW 235/2 Ethnic Relation</td>
</tr>
<tr>
<td></td>
<td>EUW 223/2 Islamic & Asian Civilizations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 212/2 University English Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 235/2 Ethnic Relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Units for Graduation</td>
<td>135</td>
<td>18</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

Elective:
Elective I: ERT 455/4 Manufacturing And Production Of Biological Products, ERT458/4 Irrigation and Drainage System
Elective II: ERT 456/3 Post Harvest Engineering, ERT 459/3 Waste Management and Utilization Engineering, ERT308/3 Food Engineering
BACHELOR OF CHEMICAL ENGINEERING TECHNOLOGY (HONOURS)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO) FOR BACHELOR OF CHEMICAL ENGINEERING TECHNOLOGY (INDUSTRIAL BIOTECHNOLOGY)

Programme Objectives 1
Graduates who are able to apply knowledge and technical skills in providing practical engineering solutions

Programme Objectives 2
Graduates who are able to demonstrate professionalism and leadership and contribute to team success and manage projects in a multi-disciplinary environment.

Programme Objectives 3
Graduates who are able to advance in their career through adopting the advancements in engineering and technology as part of lifelong learning experiences through ever changing environment.

PROGRAM OUTCOMES-PO

PO 1 Apply Knowledge of mathematics, science, engineering fundamentals and engineering specialization principles to defined and applied engineering procedures, processes, systems or methodologies.

PO 2 Solve broadly-defined engineering problems systematically to reach substantiated conclusions, using tools and techniques appropriate to their disciplines or area of specialization.

PO 3 Design solutions for broadly-defined engineering technology problems, and to design systems, components or processes to meet specified needs with appropriate consideration for public health and safety, as well as cultural, societal, environmental and sustainability concerns.

PO 4 Plan and conduct experimental investigations of broadly-defined problems, using data from relevant sources.

PO 5 Select and apply appropriate techniques, resources and modern engineering tools with an understanding of their limitations.

PO 6 Function effectively as individuals, and as members or leaders in diverse technical teams.

PO 7 Communicate effectively with the engineering community and society at large.

PO 8 Demonstrate an awareness of and consideration for societal, health, safety, legal and cultural issues and their consequent responsibilities.

PO 9 Demonstrate an understanding of professional ethics, responsibilities and norms of engineering technology practices.

PO 10 Demonstrate an understanding of the impact of engineering practices, taking into account the need for sustainable development.

PO 11 Demonstrate an awareness of management, business practices and entrepreneurship.

PO 12 Recognise the need for professional development and to engage in independent and lifelong learning.
CURRICULUM STRUCTURE FOR BACHELOR OF CHEMICAL ENGINEERING TECHNOLOGY (HONOURS) (INDUSTRIAL BIOTECHNOLOGY)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SEMESTER</th>
<th>FISRT</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>I</td>
<td>ERT 105/3 Electrical Technology</td>
<td>PTT 105/3 Engineering Graphic</td>
<td>PTT 201/4 Thermodynamics</td>
<td>PTT 204/3 Applied Fluid Mechanics</td>
<td>PTT 301/3 Safety and Health in Biological Process</td>
</tr>
<tr>
<td>I</td>
<td>PTT 103/3 Biochemistry</td>
<td>PTT 107/3 Physical Chemistry</td>
<td>PTT 203/3 Biochemical Engineering</td>
<td>PTT 206/2 Instrumentation, Measurement and Control</td>
<td>PTT 303/2 Process Modeling and Simulation</td>
</tr>
<tr>
<td>I</td>
<td>PTT 104/2 Introduction to Biotechnology</td>
<td>PTT 108/4 Mass & Energy Balance</td>
<td>PTT 207/4 Biomolecular and Genetic Engineering</td>
<td>PTT 304/3 Fermentation Technology</td>
<td>PTT 311/3 Enzyme Technology</td>
</tr>
<tr>
<td>II</td>
<td>PQT 111/3 Mathematics for Engineering Technology</td>
<td>PQT 112/3 Mathematics for Engineering Technology II</td>
<td>PQT 271/3 Statistics for Engineering Technology</td>
<td>Elective I/3 Elective A (A1) / Elective B (B1)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>EMT 110/3 Engineering Material</td>
<td>EUT 443/3 Engineering Management</td>
<td>EUT 440/3 Engineers in Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EUW 212/2 University English Language</td>
<td>EUW 410/2 University Malay Language</td>
<td>EUT122/2 Engineering Entrepreneurship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EUW 1XX/1 Co-Curricular Activity</td>
<td>EUW 233/2 Islamic Civilization and Asia Civilization</td>
<td>EUW 235/2 Ethnic Relation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EUW 322/2 Thinking Skill</td>
<td>EUW XXX/2 Option subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units for Graduation: 140

- Elective A (Specialty Products)
 - A1: Nutraceuticals Processing Technology
 - A2: Bioactive Compounds Extraction Technology
 - A3: Biopharmaceutical Technology
- Elective B (Bio-catalysts)
 - B1: Industrial Microbiology
 - B2: Bioenergy Production Technology
 - B3: Bioremediation

<table>
<thead>
<tr>
<th>Semester</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>19</td>
</tr>
<tr>
<td>III</td>
<td>19</td>
</tr>
<tr>
<td>IV</td>
<td>19</td>
</tr>
<tr>
<td>V</td>
<td>17</td>
</tr>
<tr>
<td>VI</td>
<td>18</td>
</tr>
<tr>
<td>VII</td>
<td>17</td>
</tr>
<tr>
<td>VIII</td>
<td>12</td>
</tr>
</tbody>
</table>

www.unimap.edu.my
Course Outcomes

CO1:
Ability to define and describe the biochemical concepts and terms associated with life.

CO2:
Ability to define, explain and differentiate the structure, classification and function of carbohydrates, lipids and nucleic acids.

CO3:
Ability to define, describe and differentiate the role of proteins in biochemistry and purification of proteins. To introduce enzymes.

CO4:
Ability to define, describe and illustrate electron transportation, citric acid cycle and photosynthesis in biological processes.

ERT 101/4 BIOCHEMISTRY

Course Synopsis

The topics covered in this course include the origin of life and structure of prokaryotes and eukaryotes cells. It also covers the properties of water and structure, classification and function of biomolecules such as carbohydrates, lipids and amino acids. The role of proteins and enzymes in biochemistry, purification of protein, molecular biology and genetics are featured in the course. Electron transportation, citric acid cycle and photosynthesis in biological processes are briefly highlighted in this course.

References

ERT 102/4 ORGANIC CHEMISTRY

Course Synopsis

This course introduces the fundamental theories (atomic orbital, molecular orbital and hybridization theories) and the application of hybridization theory in reactions involving alkynes and alkenes. Then, focusing on conformational analysis of alkanes and emphasizing on the nucleophilic substitution reactions of alkylhalides. The course also covers on physical and chemical properties, and chemical reactions involving alcohol and ester, aldehyde and ketone, carboxylic acid and aromatic compound. The application of organic chemical process is discussed in terms of biofuel and biopharmaceutical production.

References

ERT 105/3
ELECTRICAL TECHNOLOGY

Course Synopsis

This course is intended to provide students with a clear understanding of the DC and AC circuits, basic principles of 3-phase AC circuits, electromagnetism and magnetic circuits. They will also gain an understanding of the basic operating principles and performance analysis of three most commonly used electric machines, namely, transformers, dc machines, and induction motors.

Course Outcomes

CO1:
Ability to explain the principle elements of DC and AC circuits such as current, voltage, power, energy, nodes, branches etc.

CO2:
Ability to analyze the DC and AC circuits by using Ohm’s Law, Kirchhoff’s Current Law, Kirchhoff’s Voltage Law, Source Transformation and Thevenin’s theorem.

CO3:
Ability to calculate and analyze parameters of three phase AC system for Wye and Delta connection.

CO4:
Ability to explain the basic concept of magnetism and electromagnetism and its application in DC and AC machines.

References

ERT 106/3
BIOCHEMISTRY

Course Synopsis

The topics covered in this course include the origin of life and structure of prokaryotes and eukaryotes cells, properties of water and structure, classification and function of biomolecules such as carbohydrates, lipids and amino acids. The role of proteins and enzymes in biochemistry, purification of protein, molecular biology and genetics will be featured in the course. Electron transportation, citric acid cycle and photosynthesis in biological processes will also be briefly highlighted in this course.

Course Outcomes

CO1:
Ability to define and describe the biochemical concepts and terms associated with life.

CO2:
Ability to define, explain and differentiate the structure, classification and function of carbohydrates, lipids and nucleic acids.

CO3:
Ability to define, describe and differentiate the role of proteins in biochemistry and purification of proteins. To introduce enzymes.

CO4:
Ability to define, describe and illustrate electron transportation, citric acid cycle and photosynthesis in biological processes.

References

ERT 107/3
MICROBIOLOGY FOR BIOPROCESS ENGINEERING

Course Synopsis

This course covers the role of bacteria, fungi and virus in bioprocess industries. Comparison of
prokaryotes and eukaryotes; microbial metabolism; microbial growth kinetics and fermentation process; and factors contributing to productivity, spoilage and preservation in food and industrial microbiology are also discussed.

Course Outcomes

CO1:
Ability to define and describe important concepts and terminology in microbes and their metabolism.

CO2:
Ability to demonstrate practices in microscopy, staining, sterilization, isolation and identification of bacteria and fungi.

CO3:
Ability to define, describe and apply microbial growth in fermentation and biological process.

References

ERT 108/3 PHYSICAL CHEMISTRY

Course Synopsis

This course is designed to prepare engineering students for advance knowledge in chemistry such as thermodynamics, chemical equilibria and chemical kinetics.

Course Outcomes

CO1:
Ability to define and apply the phenomena, basic concepts, laws and principles in physical chemistry.

CO2:
Ability to calculate and solve a problem concerning physical chemistry.

CO3:
Ability to illustrate various fundamental laws in physical chemistry.

References

ERT 141/4 FUNDAMENTAL OF BIOSYSTEMS ENGINEERING

Course Synopsis

This course introduces students to the concepts of biosystems engineering and their applications in the biosphere, the ecosystem and the biological systems involving microbes, plants and animals. Students will learn the systems methodologies, life cycle assessment, growth and feedback, biological models and data measurement and analysis. The applications of conservation of mass and energy in determining the input, process and output components in agrosystems are also covered.

Course Outcomes

CO1:
Ability to define, explain the scope of Biosystems engineering & application to sustainable development.

CO2:
Ability to identify and describe systemic properties of biological systems; applied the system methodologies and engineering principles to evaluate the productivity of the biosystems.

CO3:
Ability to integrate the physical and biological information for engineering analytical framework & design.

CO4:
Ability to evaluate the interfacing effect of bio and physical systems in term of efficiency of production.
ERT 142/4
ENGINEERING PROPERTIES
OF BIOLOGICAL MATERIALS

Course Synopsis
The course is designed to introduce the properties of biological materials
and to encourage students to be able to identify physical properties
of materials required for analysis and design of agricultural, food and
biological systems. Upon completion of the course, the student will be
able to determine (measure, search, calculate, estimate) the value of a
particular engineering property based on available data or experimentally
measure the property based on existing methods and theories.

Course Outcomes

CO1:
Ability to identify physical attributes
of materials required for analysis and
design of agricultural, food and biological
systems.

CO2:
Ability to repeat and discuss concept,
techniques and calculation of thermal
and rheological properties of biological
materials.

CO3:
Ability to repeat, demonstrate and
calculate thermal and electromagnetic
properties of biological materials.

CO4:
Ability to apply and illustrate concepts
and principles of water activity, handling,
storage and moisture management of
biological materials.

References

 Biosystems Engineering. Erndition
 ISBN 0824725204
 in Our Environment. 11th edition.
 Pearson Education, Inc., Upper Saddle
 River, New Jersey.
 natural resource management for
 scientists and engineers, Cambridge
 University Press, New York

ERT 144/4
MICROBIOLOGY FOR
BIOSYSTEM ENGINEERING

Course Synopsis
This course covers the fundamental concepts, historical aspects and the
relationship among human, microorganisms and the environment with
particular emphasis on the characteristic and taxonomy of bacteria, fungi,
and protozoa. Basic microbiological and microscopy techniques, harmful
effects of microorganisms to plants and animals and their roles in food and
industrial application are also discussed.

Course Outcomes

CO1:
Ability to infer historical aspect and
explain fundamental concepts of
microbiology

CO2:
Ability to classify the characteristics of
bacteria, fungi, virus and protozoa

CO3:
Ability to apply and follow basic
microbiological techniques

CO4:
Ability to discuss the role of
microorganisms in food and industrial
application and their harmful effects to
plants and animals

References

 principles and explorations 6th
ERT 146/3
ENGINEERING MECHANICS

Course Synopsis

This course covers vector representation of forces, moments and couples of static equilibrium of particles, rigid bodies, and engineering structures, together with analysis of external and internal forces in structures via the methods of free-body diagrams and properties of cross-sectional areas. In addition, the course also elaborates on kinematics and kinetics of systems of particles and of rigid bodies in two and three-dimensional spaces covering force and acceleration, linear and angular momentum, and energy conservation.

Course Outcomes

CO1:
Ability to apply the basic principles of statics and dynamics on mechanism and bodies

CO2:
Ability to analyze systems/problems related to forces, loads, displacement for bodies at rest

CO3:
Ability to analyze systems/problems related to forces, loads, displacement for bodies in motion

References

PTT 101/3
ELECTRICAL AND ELECTRONIC TECHNOLOGY

Course Synopsis

This course introduces basic electrical circuit theory and analogue electronics. It enables students to analyze basic DC and AC circuits in addition to familiarizing with fundamental electronic components such as operational amplifiers and semiconductor diodes.

Course Outcomes

CO1:
Ability to demonstrate application of the key principles of DC circuit theory including Kirchhoff's laws of current and voltage, and rules for current and voltage division.

CO2:
Ability to explain the operation of ideal and non-ideal operational amplifier circuits and design simple operational amplifier applications.

CO3:
Ability to apply and solve simple AC series and parallel circuits using phasors and complex numbers.

CO4:
Ability to explain the operation of simple semiconductor devices.

References

PTT 102/3
ORGANIC CHEMISTRY 1

Course Synopsis

This course covers the theories, structure, bonding, nomenclature, properties, reaction, synthesis and the importance of the various classes of organic compounds. The course then builds upon this information and explores the mechanisms of a number of organic reactions involving the studied functional groups. It provides a firm foundation for further studies in organic, biological, and biochemistry. The central theme of this course is the chemistry of the principal functional groups. The application of organic chemical process is discussed in terms of biotechnology industry.

Course Outcomes

CO1: Ability to explain and differentiate the chemical and physical properties of each functional groups carry out theoretical reaction mechanism at molecular level.

CO2: Ability to explain and differentiate the chemical, physical properties and reactions of alcohol, ether, aldehyde, ketone and carboxylic acids.

CO3: Ability to apply the knowledge of organic chemical process in biotechnology industry.

References

PTT 103/3
BIOCHEMISTRY

Course Synopsis

The topics covered in this course include the properties of water and structure, classification and function of biomolecules such as carbohydrates, lipids and amino acids. The role of proteins and enzymes in biochemistry and electron transportation, citric acid cycle and photosynthesis in biological processes will also be emphasized in this course.

Course Outcomes

CO1: Ability to demonstrate basic structure, properties, functions and classification of important biomolecules.

CO2: Ability to discuss structure, function and kinetic properties of enzymes and their roles in metabolism.

CO3: Ability to illustrate electron transportation, citric acid cycle, and photosynthesis in biological processes.

References

PTT 104/2
INTRODUCTION TO BIOTECHNOLOGY

Course Synopsis

This course provides an overview of biotechnology industry, from the traditional to the recent high-technology industries. The course also highlights important and recent advances in methods and applications of biotechnology with regards to microorganisms and plants. The importance major biotechnological streams; industrial biotechnology, agricultural biotechnology, medical biotechnology and environmental biotechnology will be discussed, including recent advances and modern processes. Aspects on ethical implications, safety and intellectual will also be covered.
Course Outcomes

CO1:
Ability to explain foundations of modern biotechnology.

CO2:
Ability to demonstrate important recent advances in methods and applications of biotechnology with regards to microorganisms and plants.

CO3:
Ability to differentiate scopes and importance of various biotechnological streams.

CO4:
Ability to demonstrate understanding on ethical implications of biotechnology.

References

PTT 105/3
ENGINEERING GRAPHIC

Course Synopsis

This course introduces the use of technical drawing in an effective way for communicating and integrating with engineering concept. Students will learn engineering drawing to interpret design, using graphics method such as geometry, parallel projections, sectional drawing, machines drawing and working drawing. The primary software used in this course is AutoCAD.

Course Outcomes

CO1:
Ability to use the computer to produce complete drawing based on well define technical graphic standard.

CO2:
Ability to apply basic geometric construction techniques to create engineering drawing using computer aided design (CAD).

PTT 106/3
MICROBIOLOGY

Course Synopsis

This course introduces to student the microbial world and its relationship with man and the environment. Emphasizing on the basic concepts in microbiology, aseptic techniques and microscopy. It also encompasses bacteria, fungi and virus groups, and their taxonomy. Structure and function of prokaryote and eukaryote cells, metabolism of microbes and microbial growth kinetics and fermentation process are featured in the course. Food and industrial microbiology are also featured with reference to factors contributing to productivity, spoilage and preservation.

Course Outcomes

CO1:
Ability to categorize classes of microorganisms according to diversity.

CO2:
Ability to use practical skills in fundamental microbiological techniques.

CO3:
Ability to demonstrate microbial growth and metabolism, and compare physical and chemical methods to control growth.

References

CO4: Ability to compare the role of microorganisms in industrial, food and medical biotechnology.

References

PTT 107/3 PHYSICAL CHEMISTRY

Course Synopsis
A one-semester course designed to prepare engineering students for advance knowledge in physical chemistry such as thermodynamics, chemical equilibria and chemical kinetics.

Course Outcomes
CO1: Ability to explain and calculate the basic concepts, laws and principles in physical chemistry.

References

CO2: Ability to calculate and solve a problem concerning material equilibrium, standard thermodynamic function and reaction equilibrium in ideal gas mixture.

CO3: Ability to illustrate and solve problems concerning chemical kinetics, phase diagrams and electrochemistry.

References

PTT 108/4 MASS AND ENERGY BALANCE

Course Synopsis
The aim of this course is to expose students on the knowledge of how they should formulate and solve materials balances in various processing systems. Essentially, the material and energy which goes into the process will be converted by physical and chemical processes, whilst some may remain unconverted. The task for the chemical and biological technologies engineer to create a process statement which identifies all the materials and energy entering, remaining and leaves the systems.

Course Outcomes
CO1: Ability to calculate mass balance in chemical and biological process

CO2: Ability to calculate energy balance of in chemical and biological process; calculate heat of reaction for bioprocess reaction.

CO3: Ability to calculate mass balance in recycle, multistage and fed-batch system

CO4: Ability to calculate mass and energy balances unsteady state condition

References
ERT 205/4
FLUID MECHANICS ENGINEERING

Course Synopsis
This course emphasizes fundamental concepts and problem-solving techniques. Topics to be covered include fluid properties, static and kinematics, control volume analysis, momentum analysis of flow system, dimensional analysis, internal flows (pipe flows), differential analysis, and external flows (lift and drag).

Course Outcomes
CO1: Ability to analyze the essential parameters describing a fluid system and recognize the common devices used in measuring pressure and flow rates, and turbo machineries.

CO2: Ability to calculate pressures, forces, and stability in static fluid systems and identify whether a flow is steady or unsteady, uniform or non-uniform, laminar of turbulent and flow rate in dynamic fluid system and distinguish the link between conserved quantities and the equations of fluid mechanics.

CO3: Ability to analyze appropriate control volumes and surfaces for developing the equations of fluid mechanics.

References

ERT 206/4
THERMODYNAMICS

Course Synopsis
This course covers the concept of chemical and biochemical engineering thermodynamics. It provides the basic tools necessary for the students to be exposed to the fundamentals properties of thermodynamics and the law of thermodynamics in engineering systems. Also are provided with a comprehensive exposure to the theory as well as to the application of thermodynamics solution and the equation of state for pure and mixture fluids, the phase equilibrium and chemical reaction equilibrium calculations.

CO1: Analyze the fundamentals properties of thermodynamics and apply the law of thermodynamics in engineering systems.

CO2: Calculate heat, work and other thermodynamics properties ideal fluid and manage to solve problems for real fluids using volumetric equations of state.

CO3: Analyze the theory of the solution thermodynamics as well as the equation of state for pure and mixture fluids and to calculate phase equilibrium and chemical reaction equilibrium calculations.

References
4. (The book is in bahasa version available at the library, translated by Prof. Mashitah Hassan, 1990)

ERT 207/4
ANALYTICAL CHEMISTRY

Course Synopsis
This course introduces and discusses the basic principle of analytical chemistry that covers data analysis and interpretation. Basic statistics and the utilization of statistics are applied in most of the analytical methods. To introduce, discuss and apply classical analytical methods such as gravimetry and titrimetry. This course also meant to introduce, discuss and apply modern methods in analytical chemistry such as chromatographic and spectroscopic technique.

Course Outcomes
CO1: Ability to analyze the essential parameters describing a fluid system and recognize the common devices used in measuring pressure and flow rates, and turbo machineries.

CO2: Ability to calculate pressures, forces, and stability in static fluid systems and identify whether a flow is steady or unsteady, uniform or non-uniform, laminar of turbulent and flow rate in dynamic fluid system and distinguish the link between conserved quantities and the equations of fluid mechanics.

CO3: Ability to analyze appropriate control volumes and surfaces for developing the equations of fluid mechanics.

References
Course Outcomes

CO1:
Ability to calculate and perform the correct statistical method for data analytical and to remember the steps in quantitative analysis.

CO2:
Ability to classify and use separation techniques and gravimetric methods for mass determination.

CO3:
Ability to differentiate and to calculate concentration of analytes of various titrimetric methods (acid-base, complexation, redox and precipitation).

CO4:
Ability to apply the chromatography principles and to interpret and calculate peak height for concentration determination.

CO5:
Ability to understand the spectroscopic principles and to calculate concentration.

References

ERT 213/3
PROCESS INSTRUMENTATIONS

Course Synopsis

The course objective is to prepare the students with the necessary skills in the process industry. The course begins with introduction to process measurements involved in the process industries, followed by introduction to fundamental of industrial valves. Students then will be taught about ISA symbology, where students will be taught with the universal symbols used in process industry. Students then will be taught how to write the identification letter as well as the tag numbers for unit operation and piping. To complete the course, students will learn how to read and develop process flow diagram (PFD) and also piping and instrumentation diagram (P & ID).

References

Course Outcomes

CO1:
Define the function of different types of valves; describe and discuss the operational aspects of the valves.

CO2:
Identify and analyze the ISA Symbology for the Process Flow Diagram; apply appropriate symbols and sketch the Process Flow Diagram.

CO3:
Identify and analyze the ISA Symbology for the Piping & Instrumentation Diagram; apply appropriate symbols and sketch the Piping & Instrumentation Diagram.

ERT 214/4
MATERIAL AND ENERGY BALANCE

Course Synopsis

This course starts with engineering calculations. Students are taught to interpret series of data and to interpret graphs. Material balance as well as energy balance also will be covered in the course. The course will be completed with the introduction of several methods in calculating material balance and energy balance in a system.

References

Course Outcomes

CO1:
Ability to solve basic engineering calculations, convert units in the same dimensions and scientifically interpret series of data.

CO2:
Ability to identify single unit and multiple unit processes, distinguish parameters given in order to find a solution. Students are able to discuss mass balance concept and solve material balance problems.

CO3:
Ability to measure parameters, solve energy balance problems and discuss energy balance concepts.

CO4:
Ability to apply steam tables to solve problems in a system and also analyze all possible information data given in a system to provide a solution combining of material and energy balance.

References

5. J.F. Richardson “Chemical Engineering, Volume 3” Prentice Hall, 1994

ERT 215/3
FLUID MECHANICS

Course Synopsis

This course emphasizes fundamental concepts and problem-solving techniques. Topics to be covered include fluid properties, static and kinematics, control volume analysis, momentum analysis of flow system, dimensional analysis, internal flows (pipe flows), differential analysis, and external flows (lift and drag).

Course Outcomes

CO1:
Ability to analyze the essential parameters describing a fluid system and recognize the common devices used in measuring pressure and flow rates, and turbo machineries.

CO2:
Ability to calculate pressures, forces, and stability in static fluid systems and identify whether a flow is steady or unsteady, uniform or non-uniform, laminar or turbulent and flow rate in dynamic fluid system and distinguish the link between conserved quantities and the equations of fluid mechanics.

CO3:
Ability to analyze appropriate control volumes and surfaces for developing the equations of fluid mechanics.

References

ERT 216/4
HEAT & MASS TRANSFER

Course Synopsis

This course covers the modes of heat transfer, which are conduction, convection and radiation, the application of the principle in various unit operations in plant. The principle of mass transfer will also be discussed. The application of mass transfer will be covered in the next course called bioseparation engineering and unit operation.

Course Outcomes

CO1:
Ability to calculate mode of heat transferred.

CO2:
Ability to calculate mode of mass transferred.

CO3:
Ability to analyze heat transfer knowledge as well as designing heat transfer equipment.

References

ERT 244/4
ENERGY AND POWER IN BIOSYSTEMS

Course Synopsis

The course discusses the application of various energy resources to generate power useful for processing biological materials. It focuses on the technology, production process and engineering of renewable sources of energy which includes solar, wind, wave, and energy from biomass.

Course Outcomes

CO1: Ability to identify factors environmental influences on biological systems including animals, plants, and harvested produce.

CO2: Ability to analyse physical and energy requirements of engineering systems to enhance efficiencies of biological systems.

CO3: Analysis and design of energy generation, transmission, and utilization in the production and processing of biological materials.

CO4: Ability to evaluate feasibility of various energy alternatives.

References

ERT 245/4
HEAT AND MASS TRANSFER IN BIOLOGICAL SYSTEMS

Course Synopsis

This course elaborates and analyzes mechanisms by which heat is transferred from one body to another. The course covers steady state and transient heat conduction, convection, radiation, heat exchangers, and also mass transfer with special address on biological systems. Emphases are on formulation and application of respective mathematical models of heat and mass transfer across both physical and biological bodies.

ERT 246/4
HYDROLOGY AND WATER RESOURCES ENGINEERING

Course Synopsis

This course introduces principles of surface and ground water hydrology and their applications in water resources engineering. These
include descriptive and quantitative applications of the hydrologic cycle, weather system, precipitation, evaporation, transpiration, surface and subsurface waters, stream flow hydrographs and flood routing. The course also covers applications of hydrologic analysis with respect to basic design procedures for on-farm water management practices.

Course Outcomes

CO1:
Ability to apply the principles of hydrology, engineering analysis and design of water resources and implication to biosystems.

References

**ERT 247/4
GEOMATIC ENGINEERING**

Course Synopsis

This course covers geodetic, remote sensing, and geographical information systems (GIS) with emphases on basic surveying, fundamentals of remote sensing and its applications, and principles and applications of GIS in agricultural field. The students are exposed to field works to develop skill in using surveying equipments. The main topics discussed are traversing, tacheometry, mapping, calculation of areas and volumes, GIS, GPS, remote sensing and topographic survey.

Course Outcomes

CO1:
Ability to understand the comprehensive guide to basic principles and technologies in the application of Remote Sensing Technology and geographic information system (GIS).

CO2:
Ability to interphasing between electronics, ICT and biological systems.

CO3:
Ability to apply computer programming in the study of biosystems such managing natural resources and productivity of farmland.

References

**ERT 248/4
THERMODYNAMICS FOR BIOSYSTEMS ENGINEERING**

Course Synopsis

Thermodynamics is the study of heat related to matter in motion. The First Law of Thermodynamics involves the conversion of energy from one form to another while the Second Law determines the direction of heat flow, and the availability of energy to do work. In this course, students will be studying the terminology, principles, theory, and practical application of the First and Second Law of engineering thermodynamics.

Course Outcomes

CO1:
Ability to recognise the laws of thermodynamics for processes

CO2:
Ability to manipulate and calculate the properties of pure substances and mixtures

CO3:
Ability to apply the Clapeyron equation to pure substances using an analytical equation of state

CO4:
Ability to perform phase equilibrium calculations using software and ability to perform reaction equilibrium calculations
ERT 249/4
COMPUTER AIDED ENGINEERING DESIGN FOR BIOSYSTEM ENGINEERING

Course Synopsis
This course introduces and elaborates the use of drafting and modeling and acquire knowledge of computer graphics, 2-D and 3-D geometry related to drafting and design of mechanical and structural components and/or systems. The primary software used in this course is AUTODESK AutoCAD.

Course Outcomes

CO1:
This course is a companion for the course of mechanical design. In this course the proper knowledge of mechanical design will be emphasized on the strength of design analysis and optimization.

CO2:
Ability to calculate heat, work and other thermodynamics properties ideal fluid in given processes.

References

PTT 201/4
THERMODYNAMICS

Course Synopsis
This course introduces students to the basic thermodynamics for engineering application and problem solving. The course covers first and second laws of thermodynamics, substances properties, closed system energy, entropy and engineering applications of gas power cycles, refrigeration, compression and heat pumps, and chemical reactions.

CO3:
Ability to solve problems for real fluids using volumetric equations of state.

CO4:
Ability to apply thermodynamics properties from available data by using appropriate tools.

CO5:
Ability to examine specific equations of state or correlations that are appropriate for treating given problems.

References

PTT 202/3
ORGANIC CHEMISTRY FOR BIOTECHNOLOGY

Course Synopsis
This course covers the bioorganic compound and analytical techniques commonly used in biochemical works and categorized under spectroscopy, chromatography and electro analytical methods. This course also discusses proteins, lipid and other substances.
which may be necessary to detect and measure bioorganic compound or which can be very useful in variety of analytical methods. This course is complemented by explanation on chemical nature and methods of analysis of carbohydrates, amino acids, proteins and lipids.

Course Outcomes

CO1:
Ability to demonstrate the mechanism and synthesis of bioorganics compound.

CO2:
Ability to describe the utilization of biological materials for analytical purposes.

CO3:
Ability to discuss analytical methods ions that are appropriate for treating given problems.

References

PTT 204/3 APPLIED FLUID MECHANICS

Course Synopsis

This course emphasizes fundamental concepts and problem-solving techniques. Topics to be covered include fluid properties, static and kinematics, control volume analysis, momentum analysis of flow system, dimensional analysis, internal flows (pipe flows), differential analysis, and external flows (lift and drag).

Course Outcomes

CO1:
Ability to demonstrate the essential parameters describing a fluid system and recognize the common devices used in measuring pressure and flow rates and turbo machineries.

CO2:
Ability to calculate pressures, forces, and stability in static fluid systems and distinguish the link between conserved quantities and the equations of fluid mechanics.

References

CO3:
Ability to calculate control volumes and surfaces for developing the equations of fluid mechanics.

References

PTT 205/4
HEAT AND MASS TRANSFER

Course Synopsis
This course introduces mechanisms by which heat is transferred from one body to another. This course introduces the principles of steady and unsteady heat conduction; radiation phenomena; natural and force convections; heat transport coefficients; dimensional analysis and boundary layer. The course covers heat conduction, convection and radiation, also mass transfer with special address on biological systems. Emphases are placed on formulation and application of respective mathematical models of heat and mass transfer across both physical and biological bodies.

CO1:
Ability to illustrate the conservation laws that control mass and heat transfer.

Course Outcomes

CO2:
Ability to solve the ordinary and partial differential equations that result from the application of the conservation laws in biological systems.

CO3:
Ability to apply and solve mathematical models for physical and biological situations.

References

PTT 206/2
INSTRUMENTATION, MEASUREMENT AND CONTROL

Course Synopsis
The course deals with a number of advanced techniques, data interpretation and control of biotechnological processes. It covers modern on-line hardware sensor such as FIA, viable biomass measurement, membrane inlet mass spectrometry, flow cytometry, microcalorimetry. It also discusses model-based process diagnosis and control techniques including advances in bioprocess modeling and identification, data processing, software sensor design, and on-line control algorithms.

Course Outcomes

CO1:
Ability to illustrate the working principles of hardware sensors commonly used in biotechnological processes.

CO2:
Ability to interpret model based-process diagnosis in biotechnological processes modelling.

CO3:
Ability to use and analyze adaptive and predictive Control techniques in biotechnological processes.

References

PTT 207/4
BIOMOLECULAR AND GENETIC ENGINEERING

Course Synopsis
The course focuses on the molecular mechanisms that underlie the regulated expression of genes, including transcription and translation, as well as basic mechanisms of DNA replication, mutations and repair. Emphasize will be on the molecular mechanisms of DNA replication, repair, transcription, protein synthesis, and gene regulation in different organisms. Facilitates basic knowledge in gene manipulation based on current researches and development in the field of genetic engineering. Characterization and development of cloning vector will also be covered. Among other things to be included will be DNA isolation, the types of enzymes used in molecular biology, insertion of foreign DNA, preparation of host cell, transformation and screening of cloned DNA as well as the making of genomic and cDNA library.

Course Outcomes
CO1:
Ability to differentiate the mechanisms of DNA replication, transcription, and translation in prokaryotic and eukaryotic cells.

CO2:
Ability to demonstrate types of mutations and their repair mechanisms as well as to discuss gene regulation activity in prokaryotes and eukaryotes.

CO3:
Ability to analyze relevant information and experimental data in genetic engineering.

References

ERT 308/3
FOOD ENGINEERING

Course Synopsis
This course covers multidisciplinary field of applied physical sciences which combines science, microbiology, and engineering education for food and related industries. Topics to be covered include introduction to food engineering, food ingredients, nutrition, nutritional information, spoilage, food production systems, preservation processes, freezing, drying, direct-heating, radiation, extrusion and packaging.

Course Outcomes
CO1:
Ability to interpret ingredients and nutrition in food.

CO2:
Ability to differentiate the principle of food engineering operation.

CO3:
Ability to analyze the problem that involved in food engineering operation.

References

ERT 314/4
BIOREACTOR SYSTEM

Course Synopsis
This course will provide an introduction to the fundamental ideas of the bioreactor design and operations. It will also develop students’ knowledge and understanding of the important principles and techniques that are used in the design and analysis of various types of bioreactor system for microbial, animal and plant cell
Course Outcomes

CO1: Ability to design and formulate fermentation media and decide on the types of carbon and nitrogen source.

CO2: Ability to recognize, compare and draw the schematic diagram for specific types of bioreactors.

CO3: Ability to design a stirred tank bioreactor according to the specific application.

CO4: Ability to develop scale up based on geometric similarities or constant power number.

References

ERT 316/3
REACTION ENGINEERING

Course Synopsis

Reaction Engineering is concerned with the exploitation of reactions on a commercial scale. Its goal is to familiarize with different designs of reactors. It also emphasizes qualitative arguments, simple reactor sizing method, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and then extended to more complex problems.

ERT 317/4
BIOCHEMICAL ENGINEERING

Course Synopsis

This course focuses on the interaction between chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems are featured among lecture topics. Kinetic of growth, death and metabolism are also covered. Batch and continuous fermentation and the effect of agitation, mass transfer and enzyme technology are included. The laboratory exercises introduce students to the fundamental practices in biochemical engineering.

Course Outcomes

CO1: Ability to categorize design equation for most common industrial reactors and calculate the rate law and rate law parameters.

CO2: Ability to describe and calculate Residence Time Distribution (RTD) functions in non-ideal reactors.

CO3: Ability to calculate conversion and sizing for chemical reactors and to explain steady-state isothermal reactor.

CO4: Ability to investigate catalysis and catalytic reactions.

References

CO4:
Ability to discuss and compare the bioconversion technologies for production of organic chemicals and biofuel from agricultural biomass.

References

ERT 318/4
UNIT OPERATIONS

Course Synopsis
This course includes introduction to mass transfer theories and applications followed by specialized unit operations including gas absorption, distillation, adsorption, liquid-liquid extraction, solid-liquid extraction (leaching), membrane separation process, filtration and centrifugation. The theory is supported by performing laboratory experiments.

Course Outcomes
CO1:
Ability to apply principles; develop a basic design for gas-liquid separation equipment (Gas Absorber) and vapor-liquid separation equipment (Distillation Column).

CO2:
Ability to apply principles; develop a basic design for liquid-liquid separation equipment (Extractor) and fluid-solid separation equipments (Adsorber and Leaching Equipment).

CO3:
Ability to apply and calculate based on principles of membrane separation process and mechanical-physical separation process (filtration and centrifugation).

References

ERT 319/3
INDUSTRIAL WASTE TREATMENT

Course Synopsis
This course covers waste treatment methods that are commonly used in industries. It's introduced to the terms that are related to waste and how to calculate the properties such as biological oxygen demand (BOD), chemical oxygen demand (COD) and total carbon (TOC). From these calculations and other given information, basic unit operations involved in the treatment of waste can be design. This course also give an understanding on the processes involved in waste treatment for different industries keeping in view of the Environmental Impact Assessment (EIA), Life Cycle Assessment (LCA) and legal framework.

Course Outcomes
CO1:
Ability to explain, interpret, and calculate the physical, chemical, and biological properties of waste material and describe its toxicology.

CO2:
Ability to calculate and design the basic structure of waste treatment unit operations.

CO3:
Ability to interpret compare, justify and choose the correct method for a particular waste for treatment.

CO4:
Ability to interpret, justify, and propose the common waste management practice in industry and describe the legal framework structure.

References
ERT 320/3
BIOSEPARATION ENGINEERING

Course Synopsis
This course focuses on the recovery, isolation, purification and polishing of products synthesized by biotechnological processes like r-DNA technology, conventional microbial fermentation and enzymatic technology. The principles, advantages and limitations of certain purification units are also discussed. At the end of this course, students are able to understand the process involved in bio separation and propose a suitable process for different types of product in integration of bio separation schemes.

Course Outcomes
CO1:
Ability to describe basic principles involved in bio separation processing and calculate certain parameter involved in bio separations units.

CO2:
Ability to compare, justify and use a correct process for a particular bio separation unit to meet product requirements.

CO3:
Ability to discuss and propose the Bio separation techniques/processes and RIPP (Recovery, Isolation, Purification and Polishing) scheme.

References

ERT 321/4
PROCESS CONTROL & DYNAMICS

Course Synopsis
This course includes an introduction to process control and dynamics, feedback controllers, control system instrumentation, overview of control system design, theoretical models, dynamic behavior of processes, PID controller design and troubleshooting. The theory is supported by performing laboratory experiments.

Course Outcomes
CO1:
Ability to derive and develop theoretical model of chemical processes, analyze Laplace transform techniques to simplify first order and second order processes and create transfer functions and state space models.

CO2:
Ability to derive and develop dynamic behavior of first and second order processes, analyze dynamic response characteristics of more complicated processes and development of empirical models from process data.

CO3:
Ability to analyze control system instrumentation and propose feedback control system for bioprocess and chemical processes.

CO4:
Ability to calculate and analyze dynamic behavior of closed-loop control system.
References

ERT 322/3
SAFETY & LOSS PREVENTION IN BIOPROCESS

Course Synopsis

This course covers fundamental process of safety specifically toxicology, industrial hygiene, sources model, fires and explosions as well as relief concept design. The students are also exposed to hazard identification, risk assessment and accident investigation. The course will be concluded with biohazard and biosafety in bioprocess.

Course Outcomes

CO1:
Ability to analyze the source, toxic release and dispersion models and evaluate the significance of the events.

CO2:
Ability to distinguish fires and explosion as well as examine ways to prevent it.

CO3:
Ability to analyze relief concepts as well as calculate or sizing the relief system.

References

ERT 323/2
SIMULATION FOR BIOPROCESS ENGINEERING

Course Synopsis

The course covers introduction of simulation of bioprocess, material and energy balances, equipment sizing and costing, and environmental impact assessment. Students are exposed to the usage of SuperPro design software for modeling and simulation purposes. Subsequently, sustainability assessment will be introduced, emphasizing on economic and profitability analysis.

CO4:
Ability to analyze and evaluate process safety to identify the hazard and risk in the industry.

References

ERT 348/3
FARM STRUCTURES

Course Synopsis

This course provides students with theory and application of various methods of statically determinate as well as indeterminate structural analysis as it applies to trusses, beams, and frames. This course emphasizes
Course Outcomes

CO1:
Ability to understand the principle of soil-water-plant relationships.

CO2:
Ability to apply soil and water engineering principle to water management irrigation practice.

CO3:
Ability to do land surveying and develop contour mapping and with application of GIS & GPS.

CO4:
Ability to apply knowledge of water management to management of natural and engineered biosystems.

References

ERT 350/3
INSTRUMENTATION, MEASUREMENT AND CONTROL IN BIOSYSTEMS

Course Synopsis

The course covers the general concept of instrumentation, various measuring devices, and the manipulation, transmission, and recording of data. Reference to instrumentation use in biosystems engineering made where applicable. Students will be able to comprehend measurement standards, data analysis and calibration methods which are essential features of any measurement programme.

Course Outcomes

CO1:
Ability to use, suits of instruments and protocol for accurate measurement, monitoring and control (MMC) in Biosystems.

CO2:
Ability to understand and operate the automatic wheather station, water measuring stations and other recent automation system applied to biosystems.

CO3:
Ability to assemble system (MMC) for specific biosystems use.

References

ERT 351/3 SUSTAINABLE AGROSYSTEMS ENGINEERING

Course Synopsis

This course discusses important components of sustainability for agrosystems which can be optimized through suitable application of engineering principles to reinforce the conventional wisdom of agrosystems production. Important engineering approaches invoking reviewing current practice and design will be covered. At the end of the course, student will recognized the scope of engineering that can be a sustainable factor for the farming system.

Course Outcomes

CO1: Ability to understand and apply the engineering principles to the limitation of biological systems productions.

CO2: Ability to apply the engineering principle requirement for zero waste management.

CO3: Ability to design systems for processing and utilization of by-products generated by the bioresource industries, including primary agriculture, food processing, and forestry.

CO4: Ability to analyse pollution problems caused by these industries.

CO5: Ability to identify the opportunities for recycling and utilization of by-products.

References

PTT 301/3 SAFETY AND HEALTH IN BIOLOGICAL PROCESS

Course Synopsis

This course covers the regulatory procedure dealing with biological process. The students are also exposed to hazard identification, risk assessment, biosafety level and health surveillance program. Besides, the students also will be taught on fundamental aspect in emergency response plan relevant to biological process.

Course Outcomes

CO1: Ability to categorize the different laboratory levels and class of biosafety.

CO2: Ability to analyze process safety to identify the biohazard and risk in the industry.

CO3: Ability to write and describe health surveillance program.

CO4: Ability to use emergency response plan and biological waste decontamination guideline relevant to biological process.

References

PTT 302/3
DOWNSTREAM PROCESSING TECHNOLOGY

Course Synopsis
This course introduces basic and advanced skills in separation technology related to biotechnology. The course covers common separation techniques which include precipitation, centrifugation, solvent extraction and different types of chromatographic techniques. Other important separation processes will also be covered.

Course Outcomes
CO1: Ability to demonstrate methods to purify biologically processed materials.
CO2: Ability to choose equipment and steps required in bio separation systems.
CO3: Ability to analyze and compare alternative separation approaches and systems.
CO4: Ability to choose appropriate instrumentation for bio separation applications.

References

PTT 303/2
PROCESS MODELLING AND SIMULATION

Course Synopsis
The course covers material and energy balances, equipment sizing, and costing, environmental impact assessment and process design for single and continuous processes. Students are exposed to the usage of SuperPro design software for modeling and simulation purposes. Subsequently, sustainability assessment, emphasizing on economic and profitability analysis will also be covered.

Course Outcomes
CO1: Ability to solve engineering calculation like mass and energy balance, stoichiometry, and kinetics of the bioprocess.
CO2: Ability to apply process and differentiate unit operation in bioprocess using simulation software
CO3: Ability to analyze economic data and apply environmental impact and sustainability assessment.

References

PTT 304/3
FERMENTATION TECHNOLOGY

Course Synopsis
This course covers both theoretical and practical aspects of fermentation and bioprocess technology. It also describes several fermentation processes involved in the production of industrial chemical metabolites such as alcohol, organic acids, proteins, enzymes and antibodies.

Course Outcomes
CO1: Ability to differentiate various fermentation methods including the control parameters.

References
CO2: Ability to calculate mass balances stoichiometry and microbial growth kinetics in batch, fed-batch and continuous fermentations.

CO3: Ability to calculate sterilization times, aeration requirement and capacities of batch, fed-batch and continuous fermentation.

CO4: Ability to illustrate the principles of up and down-scaling of fermentation processes and primary recovery methods.

References

PTT 306/3 NUTRACEUTICALS PROCESSING TECHNOLOGY

Course Synopsis

The subject covers a broad spectrum of functional foods and nutraceuticals from biological material, applications of engineering techniques in functional food production, process engineering and modeling, functional food bioavailability, to product quality. The emphasis is on (1) applications of various techniques such as high pressure, supercritical fluid, membrane, microencapsulation, and molecular distillation in the processing of functional foods; (2) stability of bioactive components and antioxidative properties during processing and shelf life; (3) improvement in bioavailability of bioactive components by physical and chemical methods; and (4) mechanisms of antioxidant action and clinical and epidemiological evidence of functionality.

Course Outcomes

CO1: Ability to apply techniques in the processing of functional foods and nutraceuticals.

CO2: Ability to analyze stability of bioactive components and antioxidative properties during processing and shelf life.

CO3: Ability to analyze and test bioprocessing technology for production of nutraceutical compounds.

References

PTT 305/3 CELL AND TISSUE CULTURE TECHNOLOGY

Course Synopsis

This course will introduce the students to the basic knowledge of plant and animal cell culture. The course will cover on the media preparation, aseptic techniques and sterilization, techniques of cultivation as well as applications of plant and animal cell culture.

Course Outcomes

CO1: Ability to operate laboratory equipments, media and sterilization methods for plant and animal culture.

CO2: Ability to differentiate techniques involved in animal and plant tissue culture.

CO3: Ability to apply the principle of plant and animal tissue culture technology in industrial biotechnology.

References

PTT 307/3
INDUSTRIAL MICROBIOLOGY

Course Synopsis

This course explores microbiological industry development, scope of microbiological industries, microbes in microbiological industries, biomass and metabolite production, microbes in bioremediation and in waste treatment industries. The course also refreshes microbial fundamentals and strain improvement for new products and productivity improvement.

CO2:
Ability to classify microbiological processes involved in applications production of a range of industrial products.

CO3:
Ability to illustrate current development trends in the field of industrial microbiology and biotechnology.

References

PTT 308/4
FINAL YEAR PROJECT 1

Course Synopsis

A short-termed research project that inclined towards engineering operations for producing new biotechnological products is necessary for a final-year student. The student will be given an engineering problem (or encourage to identify on their own) and gain expertise by problem solving, investigation, research writing and effective presentation of the research outcome in the form of thesis and seminar. The area of research mainly on fermentation, enzyme technology, bioconversion and natural products and nutraceuticals technologies.

Course Outcomes

CO1:
Ability to apply and integrate theory and practical to solve the engineering problems.

CO2:
Ability to develop suitable research methodology for the project.

CO3:
Ability to present and defend effectively project proposal to selected audience.

CO4:
Ability to identify commercialization potential for proposed project.

References

PTT 309/3 FOOD TECHNOLOGY

Course Synopsis
This course covers multidisciplinary field of applied physical sciences combines science, microbiology, and engineering education for food and related industries. Topics to be covered include introduction to food engineering, food ingredients, nutrition, nutritional information, spoilage, food production systems, preservation processes, freezing, drying, direct-heating, radiation, extrusion and packaging, freezing, texturization, mechanical separation and food biotechnology.

Course Outcomes

CO1:
Ability to differentiate the principles of food engineering operations.

CO2:
Ability to interpret ingredients and nutrition in food.

CO3:
Ability to analyze problems involved in food engineering operations.

References

PTT 310/2 WASTE MANAGEMENT AND UTILIZATION

Course Synopsis
The subject covers the main aspects of utilization of the food industry waste and the treatments necessary to discard waste to environmental acceptors. Emphasize will be on the exigency for utilization and treatment of food waste according to the ISO 14001. The technology of anaerobic fermentation for biogas production, specific degradation of solid wastes including their direct practical applicability, as well as composting of agricultural and food waste are will be addressed accordingly.

Course Outcomes

CO1:
Ability to demonstrate methods to purify biologically processed materials.

CO2:
Ability to choose equipment and steps required in bio separation systems.

CO3:
Ability to analyze and compare alternative separation approaches and systems.

CO4:
Ability to choose appropriate instrumentation for bio separation applications.

References
3. M. Angela A. Meireles, Extracting bioactive compounds for food products, CRC Press, 2009
4. Jose L. Martinez, Supercritical fluid extraction of nutraceuticals and bioactive compounds, CRC Press, 2008.

PTT 311/3 ENZYME TECHNOLOGY

Course Synopsis
The course covers basic enzymology, including properties, classification,
Course Outcomes

CO1:
Ability to explain fundamentals of enzyme kinetics.

CO2:
Ability to discuss the current and future trends of enzymes applications in bio-analysis, biotechnology and industrial sectors.

CO3:
Ability to choose appropriate techniques for extraction and purification of enzymes/proteins.

CO4:
Ability to demonstrate methods for enzyme immobilization and the characterization of immobilized enzymes kinetics.

References

PTT 312/3
BIOACTIVE COMPOUNDS EXTRACTION TECHNOLOGY

Course Synopsis

The course discusses different types of extraction methods for extraction of bioactive compounds from plants. It also covers overview of the fundamentals of heat and mass transfer as well as the thermodynamics of the processes of steam distillation, distillation, low-pressure solvent extraction (solid–liquid) from vegetable matrices, high-pressure extraction from vegetable matrices, and liquid–liquid extraction and adsorption, which are processes used to obtain high-quality bioactive extracts and purified compounds from botanical sources.

References

PTT 313/3
BIOENERGY PRODUCTION TECHNOLOGY

Course Synopsis

The course explains in detail global energy sources, fossil fuels, and renewables, Biomass Feedstocks, biofuels. processing conditions and alternative applications of biorenewable feedstocks. Liquid and Gaseous Biofuels, including main liquid biofuels such as bioethanol, biodiesel, biogas, biohydrogen, liquid and gaseous fuels from the Fischer–Tropsch synthesis are addressed in detail. Discussion on Thermochemical Conversion Processes covers the utilization of biorenewables, Biofuel Economy and Biofuel Policy are also included.
Course Outcomes

CO1:
Ability to differentiate different sources and types of bioenergy.

CO2:
Ability to analyze economic and environmental impact of bioenergy.

CO3:
Ability to demonstrate production process of bioenergy.

References

ERT 424/3
BIOPROCESS PLANT DESIGN 1

Course Synopsis

This course contains the preliminary design of bioprocess plant. It focuses on process creation, simulation to assist in process reaction and heuristic for process analysis, synthesis of process equipment design. Simulation software will be the main feature and implemented throughout the course in the process flow sheeting and equipment design.

Course Outcomes

CO1:
Apply engineering principles like reaction engineering rules, bioreaction stoichiometry, thermodynamics, kinetics, unit operations and unit procedures and also develop the bioprocess plant system.

CO2:
Justify, synthesize and design a suitable unit operation in a bioprocess plant based on bioprocess system involved.

CO3:
Develop and solve unit operation design using modern simulation and create the Process Flow Diagram (PFD) for bioprocess plant.

References

ERT 425/3
GOOD MANUFACTURING PRACTICE FOR BIOPROCESS INDUSTRIES

Course Synopsis

This course gives a complete overview about the production facility from start of the project up to the production process and how to carry out all project steps according to the guidelines of the GMP. Topics include the background to GMP and cGMP regulations and guidelines and their relevance in the laboratory, process development and pilot plant.

Course Outcomes

CO1:
Ability to apply the concepts and analyze the requirements of GMP and Validation in bioprocess production area and develop Standard Operation Procedure (SOP).

CO2:
Ability to analyze the GMP requirements and develop and evaluate primary and secondary bioprocess engineering products, together with their Safety, Health and Environment (SHE) aspects.
CO3: Ability to analyze the GMP requirement and HACCP and design and evaluate the Laboratory, Process Development Facilities, Pilot Manufacturing Facilities and Manufacture of food and Biopharmaceutical products.

References
2. Alli, I., Food, Quality Assurance, CRC PRESS, New York, 2004
5. Bennett, B. Pharmaceutical Production: An Engineering guide. Institution of Chemical Engineers (IChemE), Warwickshire, UK, 2003

ERT 426/3 FOOD ENGINEERING

Course Synopsis
This course covers multidisciplinary field of applied physical sciences which combines science, microbiology, and engineering education for food and related industries. Topics to be covered include introduction to food engineering, food ingredients, nutrition, nutritional information, spoilage, food production systems, preservation processes, freezing, drying, direct-heating, radiation, extrusion and packaging.

Course Outcomes
CO1: Ability to interpret ingredients and nutrition in food.
CO2: Ability to differentiate the principle of food engineering operation.
CO3: Ability to analyze the problem that involved in food engineering operation.

References

ERT 427/3 PHARMACEUTICAL PROCESS ENGINEERING

Course Synopsis
The aim of present course is to describe the principles of drug pharmacokinetics: absorption, distribution, metabolism and excretion of drugs. This course describes the scientific and technological aspects of the designing and manufacturing of pharmaceutical products.

Course Outcomes
CO1: Explain the basic concept of drug absorption and disposition and evaluate related pharmacokinetics.
CO2: Ability to design and demonstrate pharmaceutical production facilities.
CO3: Ability to formulate and evaluate the pharmaceutical engineering processes in pharmaceutical formulation and production.

References

ERT 428/4
BIOPROCESS PLANT DESIGN 2

Course Synopsis

This course encompasses modern strategies for the design of bioprocess plants including piping and instrumentation diagram (P&ID), control strategies, economic analysis, costing and profitability analysis. Students will be exposed to the software application using simulation software to simulate and analyze the designed processes. Students are to present their design project in group.

Course Outcomes

CO1:
Classify and recommend safety and risk assessment on the bioprocess plant system.

CO2:
Design the typical control strategies for the safe plant operation and recommend the waste management for any visual impact from the process effluent to meet the environmental friendliness of the products.

CO3:
Apply the technique used for estimation of plant economics and Compare economic feasibility of the process plant for project evaluation and process optimization.

References

ERT 429/3
ENERGY FROM BIORESOURCES

Course Synopsis

The aim of this course is to introduce and develop the energy that can be generated from bioresources or biomass which is the alternative way of producing energy from fossil-based fuels. This course intends to teach the students of emphasizing the use of more environmentally-friendly technologies which can lead to reduction of pollution, sustain and maintain the ecology system. This course starts with the introduction of biomass resources and the characteristics of biofuels followed by the analysis of the biological processes in producing ethanol and butanol. In the subsequent weeks, the students will be taught the chemical and thermochemical processes in producing biodiesel, biohydrogen and methane biogas. This course ends with the proposal of production of biofuels from microalgae and seaweeds.

Course Outcomes

CO1:
Ability to analyze and develop the biomass resources and characteristics of biofuels. Develop ethanol and butanol production through biological processes.

CO2:
Ability to design and evaluate the thermochemical and chemical conversion of biomass to power and biofuels. Develop chemical conversion process for biodiesel production.

CO3:
Ability to evaluate the production of biohydrogen and the utilization of methane biogas. Design and evaluate the biofuels production from microalgae and seaweeds.

References

ERT 430/3
DESIGN OF EXPERIMENTS

Course Synopsis
The course begins with the strategy of experimentation and introduction to basic statistical approach, then exposure to factorial design. Calculation on analysis of variance is also included as well as 2k factorial design and 2k-p fractional factorial design. Elaborate learning on Response Surface Methods (RSM) such as Central Composite Design (CCD) and Box-Behnken design for fitting a second order model. The incorporation of Design of Expert software version 7 or 8 in analyzing the chemical or biochemical process will make the students learning more effective. Finally, introduction to Taguchi approach to process optimization is discussed in brief.

Course Outcomes

CO1: Ability to discuss general principles of factorial design.

CO2: Ability to analyze and calculate analysis of variance and residual analysis model.

CO3: Ability to design and calculate for fitting first order and second order model using response surface methodology.

References

ERT 445/2
FINAL YEAR PROJECT 1

Course Synopsis
This is an individual research project in connection with a special engineering problem and under the guidance of an academic staff. The project undertaken may fall under one of the following areas: mathematical analysis, experimental tests, computer simulation, hardware and/or software development, device fabrication. In this subject, the students will be taught on how to discuss the research findings and determine the conclusion based on findings. In the end of this course, students will present the research findings and submit hardcover thesis.

References

ERT 446/4
FINAL YEAR PROJECT 2

Course Synopsis
This is an individual research project in connection with a special engineering problem and under the guidance of an academic staff. The project undertaken may fall under one of the following areas: mathematical analysis, experimental tests, computer simulation, hardware and/or software development, device fabrication. In this subject, the students will be taught on how to discuss the research findings and determine the conclusion based on findings. In the end of this course, students will present the research findings and submit hardcover thesis.
Course Outcomes

CO1:
Identify the methodology of the research then organize and demonstrate experiments to collect research data.

CO2:
Choose the suitable research data and synthesize the data.

CO3:
Explain the data findings then describe, discuss and justify based on academic source.

CO4:
Originate, explain and defend effectively in the form of thesis requirement.

References

1. Pentz, M. and Shott, M. ”Handling Experimental Data’ Open University, Philadelphia.

ERT 452/3
VIBRATION

Course Synopsis

References

ERT 453/4
DESIGN OF MACHINE SYSTEM IN BIOSYSTEMS

Course Synopsis

Study of agricultural and other off-road machinery with special attention to the functional design requirements of various machine operations, cost analysis, machinery selection and testing. Topics include tillage force analysis, tillage tools, mechanisms for metering and applying seed, fertilizer and pest control chemicals, harvesting methods and machinery, hydraulic and other methods of transmitting power and controlling machines, application of computer aided design and finite element method in design analysis. Interactions of machines with biological systems. Application of agricultural machinery for optimal selection, operation and performance, and management of farm machinery. Viz: Tractors, tillage, seeding, chemical application, biomass and grain/fruit harvesting.

Course Outcomes

CO1:
Ability to appreciate and familiar to specialized components and analyses relevant to mechanized systems for production and processing of biological materials.

CO2: Ability to understanding the function of components within systems.

CO3: Ability to integrate machine and biological systems.

CO4: Ability to apply machine components in a variety of situations and will develop conceptual designs for some of the components.

References

ERT 454/3
CONTROLLED ENVIRONMENT DESIGN II

Course Synopsis

A professional course on engineering design and analysis of structures and environmental systems common to agricultural and commercial buildings. The course involves the two broad subject areas common to a Structures and Environment program of study. The first subject area consists of wood and concrete structural design, structural load estimation, introduction to applicable building codes, grain bin storage and fastener selection. The second subject area provides an introduction to thermal environmental engineering design appropriate for agricultural production facilities, including psychrometrics, heat transfer, ventilation and heating, air distribution within buildings, control systems, and thermal loads on facilities. Upon successful completion of this course, a student shall demonstrate engineering competence in: Structural design in agriculture, with emphasis on load estimation, light timber and concrete, granular materials storage, and fasteners. Psychrometrics, physical environment for animals and plants, design of thermal environment systems. Emphasis on plant and animal interaction with the building thermal environment. Heating, ventilating, cooling and interior air distribution.

Course Outcomes

CO1: Ability to apply basic structural engineering in planning and development of agriculture production systems under controlled environment.

CO2: Ability to design and evaluation of farm infrastructures, agriculture buildings, greenhouses and livestock housings.

CO3: Ability to analyse and synthesis the decision making on the controlled environment, mechanization, automation and facility requirements of crop and livestock productions.

CO4: Ability to integrate controlled environment and natural biosystems.

References

ERT 455/4
MANUFACTURING AND PRODUCTION OF BIOLOGICAL PRODUCTS

Course Synopsis

Studies basic systems used in food processing including facilities, power requirements, equipment for primary and secondary processes. The specific unit operations and equipment studies include pumps and blowers, heat exchangers, drying, freezing, absorption, distillation, size reduction, and mixing. Discusses materials of construction for food process equipment and the layout of plant equipment. Principle in product development from bio-resources will be emphasis.
Course Outcomes

CO1:
Ability to understand and apply the fundamental aspects of Good Manufacturing Practice (GMP) and their pertinent features.

CO2:
Ability to analyse and design of machines and machine systems for production and processing of biological materials. Including Principles of Food and Feed processing equipment.

CO3:
Ability to apply quality control procedure for production.

References

1. WHO GMP Guidelines.

ERT 456/3
POST HARVEST ENGINEERING

Course Synopsis

Principles of size reduction, sorting and grading, dehydration, refrigeration, and air handling. Equipment and systems for materials handling, drying, and storage. Management of grain drying complex, fruits and vegetable product under local condition and related activities will be emphasis.

ERT 457/3
DESIGN OF AUTOMATION SYSTEMS

Course Synopsis

Advance study on instrumentation. Emphasis on selection of measurement techniques and transducers to sense physical properties of biological materials. Application to agricultural, food processing industries and biological system. Application of biosensors in biosystems. Design of automation system and machine/gentry for biological system. Design project is required.

Course Outcomes

CO1:
Ability to apply the principle of engineering in the processes involved in conveying, storing, drying, cleaning and sorting agricultural products.

CO2:
Ability to analyse and design machines used for conveying bulk solids and liquids.

CO3:
Ability to understand the theory and practice of drying for grain and forage crops. Moisture and quality control in storage and transport.

References

CO4:
Ability to use computer modeling and simulations optimization method, and decision support systems. Ability to do in silico study crop growth and interaction with variable parameters in system.
PTT 401/6
FINAL YEAR PROJECT II

Course Synopsis
A short-term research project that inclined towards engineering operations for producing new biotechnological products is necessary for a final-year student. The student will be given an engineering problem (or encourage to identify on their own) and gain expertise by problem solving, investigation, research writing and effective presentation of the research outcome in the form of thesis and seminar. The area of research mainly on fermentation, enzyme technology, bioconversion and natural products and nutraceuticals technologies.

Course Outcomes

CO1: Ability to apply and integrate theory and practical to solve the engineering problems.

CO2: Ability to develop suitable research methodology for the project.

CO3: Ability to present and defend effectively project proposal to selected audience.

CO4: Ability to identify commercialization potential for proposed project.

References

PTT 402/3
BIOTECHNOLOGY FACILITY DESIGN

Course Synopsis
This course gives complete overview on the biotechnology facilities design. Topics included in this course are the processing equipment, cleaning of process design and utilities system. This course also introduces current Good Manufacturing Practices (cGMP), regulatory features affecting process and building design and documentation for validation of biotechnology facilities.

Course Outcomes

CO1: Ability to discuss the current and future bioprocess facility based on industry demand.

CO2: Ability to apply cGMP regulations in biotechnology facility.

CO3: Ability to design a bioprocess facility, undertake problem identification and solution.

References

PTT 403/2
BIOTECHNOLOGY PRODUCTS COMMERCIALIZATION

Course Synopsis
The course covers on the current status in biotechnology research and commercialization aspects of biotechnology products. Students will also learn about current issues of
patenting, intellectual property and licensing of biotechnology products as well as developing business plans to meet the market needs.

Course Outcomes

CO1: Ability to illustrate the commercial aspects of biotechnology products.

CO2: Ability to select a potential product and prepare a business plan for that particular product.

CO3: Ability to practice costing of biotechnology projects.

References

1. Journals of Biotechnology
2. Trends in Biotechnology

PTT 404/3
BIOPHARMACEUTICAL TECHNOLOGY

Course Synopsis

This course attempts to provide a balanced overview of the biopharmaceutical industry, in terms of categorizing the products currently available, and also illustrating how these drugs are produced and brought to market. It focuses on several ‘traditional’ pharmaceutical substances isolated from biological sources, and recently developed biopharmaceutical products. Peptide-based therapeutic agents, and the potential of nucleic acid-based drugs, biopharmaceutical drug delivery, genomics and proteomics are also discussed.

Course Outcomes

CO1: Ability to categorize various biopharmaceuticals and illustrating how these drugs are produced and brought to market.

CO2: Ability to demonstrate production process of biopharmaceuticals.

CO3: Ability to evaluate the application of biotechnology in the development of biopharmaceuticals.

References

PTT 405/3
BIOREMEDIATION

Course Synopsis

This course attempts to provide a balanced overview of the bioremediation. The topics covered in this courses are: type sources of contamination and pollution, bioremediation technologies in for soil and water; Types of bioremediation technologies, bioremediation of solid, liquid and gas phase and the last one is case studies for bioremediation.

Course Outcomes

CO1: Ability to analyze and distinguish the type of bioremediation.

CO2: Ability to illustrate and solve the design consideration on each type of bioremediation.
References

3. Environmental Biotechnology: Theory and Application, Gareth M. Evans, Judith C. Furlong, WILEY,2002
Graduate from this school has a wide range of employment prospects either in private companies, industry, government departments and statutory bodies. Sectors that offer employment opportunities are as follows:

- Industrial Bioprocess
- Pharmaceutical Industry
- Food Industry
- Consultation and Research Institution such as MARDI, FRIM
- Chemical Industry
- Biotechnology Companies
- Environment Sector
- Public Sector Farming Body (FELDA, Felcra, MADA etc)
- Forestry Sector (Manufacturing & Management)
- Irrigation and Drainage
- Education Sector
Programmes Offered:

- Bachelor of Engineering (Environmental Engineering)
- Bachelor of Engineering (Building Engineering)
- M.Sc Environmental Engineering
- PhD Environmental Engineering
Introduction

The School of Environmental Engineering (PPKAS) was established in January 2006 after approval from the Ministry of Higher Education on 27 October 2005. The environmental engineering programme was first offered in the 2006/2007 academic session. A total of 30 students enrolled into this programme at that time. The first cohort from Environmental Engineering graduated in August 2010.

In line with the national industrial growth, the School of Environmental Engineering currently offers two bachelor degree programmes i.e. Bachelor of Engineering (Honours) (Environmental Engineering) and Bachelor of Engineering (Honours) (Building Engineering). The Vision and Mission of School of Environmental Engineering are stated below:

Vision
An internationally recognized academic programme.

Mission
To support national industrial aspiration towards environmental protection.
DEAN
ASSOCIATE PROFESSOR DR. KHAIRUL NIZAR BIN ISMAIL
Email:nizar@unimap.edu.my

DEPUTY DEAN
(ACADEMIC AND RESEARCH)
DR. NASRUL BIN HAMIDIN
Email: nasrulhamidin@unimap.edu.my

DEPUTY DEAN
(STUDENT DEVELOPMENT AND ALUMNI)
MR. SALSUWANDA SELAMAT
Email:salsuwanda@unimap.edu.my

CHAIRPERSON of DEGREE PROGRAMME
(ENVIRONMENTAL ENGINEERING)
DR. TENGKU NURAITI BINTI TENGKU IZHAR
Email: nuraiti@unimap.edu.my

CHAIRPERSON of DEGREE PROGRAMME
(BUILDING ENGINEERING)
MRS. NORIZA BINTI MOHD IBRAHIM
Emel: norizia@unimap.edu.my

COORDINATOR FOR INDUSTRIAL
NETWORKING AND QUALITY
MANAGEMENT
MRS. AIN NIHLA KAMARUDZAMAN
Emel: ainnihla@unimap.edu.my

ASSISTANT REGISTRAR
MRS. NOR INNAR BINTI MD. NOR
Email: norinnar@unimap.edu.my
LECTURERS

Associate Professor Dr. Khairul Nizar Ismail
PhD, M.Sc. Building Tech.,
B.Sc.,HBP, (USM)
Tel :04-9798630
Faks:04-9798636
E-mail: nizar@unimap.edu.my

Dr. Fahmi Muhammad Ridwan
PhD。(Env.Eng.),(Hiroshima),
M.Eng.(Chem.),(Sumatera Utara)
Tel :04-9798981
Faks:04-9798636
E-mail: dfrahmi@unimap.edu.my

Dr. Ong Soon An
PhD. (Env.Eng.)(Oita University,Japan),
MSc,BSc. (USM)
Tel :04-9798986
Faks:04-9798636
E-mail: saong@unimap.edu.my

Dr. Nasrul Hamidin
PhD (Griffith Univ., Australia),
Master of Industrial Safety Management (UKM),
BSc (Environment) (UPM)
Tel:04-9798640
Faks:04-9798636
E-mail: nasrulhamidin@unimap.edu.my

Dr. Tengku Nuraiti Tengku Izhar
PhD (Solid Waste Management)(USM)
MSc (Env Eng)(USM),
BEng (Mineral Resources)(USM)
Tel:04-9798987
Faks:04-9798636
E-mail: nuraiti@unimap.edu.my

Mrs. Ain Nihla Kamarudzaman
M.Eng (Civil-Wastewater Eng),
B.Eng (Civil) (UTM)
04-9798968
E-mail:ainnihla@unimap.edu.my

Mr. Khairudin Md. Isa
M.Sc (Env. Sc.) (UPM),
B.Eng (Bioprocess Eng.) (UTM)
04-9798991
E-mail:khairudin@unimap.edu.my

Mrs. Masitah Hasan
M.Sc. (Chem.)(USM)
B.Eng (Chem),
04-9798804
E-mail:masitah@unimap.edu.my

Mr. Md. Hadli Abu Hasan
M.Sc.(Civil Eng.),
B.Eng.(Civil),
Dip. In Civil Eng.(UiTM)
04-9798973
E-mail: mdhadli@unimap.edu.my

Mrs. Norlia Mohd Ibrahim
M.Sc.(Env.Eng.)
B.Eng.(Civil),(USM)
04-9798980
E-mail:norlia@unimap.edu.my

Mrs. Norliah Aminah Lutpi
M.Eng.(Env.)(Queensland),
B.Eng.(Env.)(UM),
04-9798995
E-mail: nabilah@unimap.edu.my

Mrs. Nor Wahidatul Azura Zainon Najib
M.Eng.(Env.)(UKM)
B.Eng.(Mineral Resources)(USM),
04-9798970
E-mail: norwahidatul@unimap.edu.my

Miss Nur Liza Rahim
M.Eng.(Civil Eng.),
B.Eng.(Civil Structural)(UKM)
E-mail: nurliza@unimap.edu.my

Mrs. Roshazita Che Amat
M.Sc.(Mineral Resources)(USM)
B.Eng.(Mineral Resources),
04-9798976
E-mail: roshazita@unimap.edu.my

Mrs. Roslaili Abdul Aziz
M.Sc (Env. Eng.) (USM),
B.Sc (Env. Tech.) (KUSTEM)
04-9798974
E-mail: roslaili@unimap.edu.my

Mrs. Salwa Mohd Zaini Makhtar
M.Sc (Env. Eng), B.Eng (Civil Eng.) (USM)
04-9798972
E-mail: salwa@unimap.edu.my

Mr. Salsuwanda Selamat
M.Eng.(Env.) (UPM), B.Eng.(Chem)(UTM)
04-9798977
E-mail: salsuwan@unimap.edu.my

Mr. Umar Hj Kassim
M.Sc (Town Planning), B.Sc (HBP)(USM)
04-9798975
E-mail: umar@unimap.edu.my

Mr. Wong Yee Shian
M.Sc (Env.Tech.),
B.Sc(Env.Tech) (USM)
04-9798971
E-mail: yswong@unimap.edu.my

Associate Professor Ir. Shuib Sahudin
MSc (Mechanical Engineering)(University College Of Swansea),B.Sci.(Mechanical Engineering)(University Of Sunderland)
E-mail:shuibmie@unimap.edu.my

Ir. Muhammad Arkam Che Munaaim
Master in Building Technology(USM),B. Engineering (Electrical)(UTM),Diploma in Electrical Eng.(Power)(UTM)
E-mail: arkm@unimap.edu.my

Ir. Abdul Ghapar Ahmad
M.Science Project Management(USM),B. Eng.(Civil)(UTM)
E-mail:irghapar@unimap.edu.my

Wan Amiza Amneera Wan Ahmad
M.Eng.(Env)(UKM),B.Eng.(Env.)(UM)
E-mail: amneera@unimap.edu.my
VOCATIONAL TRAINING OFFICERS

Mr. Razi Ahmad
B.Eng (Chem) (UKM)
E-mail: razi@unimap.edu.my

Mr. Nazerry Rosmady Rahmat
B.Eng (Civil) (UTM)
04-9798808
E-mail: nazerry@unimap.edu.my

Mr. Roshasmawi Abdul Wahab
B.Eng (Civil) (UTM)
04-9798805
E-mail: roshasmawi@unimap.edu.my

Mr. Munif Bahatin
B.Eng (Civil) (UTM)
04-9798801
E-mail: munifbahatin@unimap.edu.my

Shamshinar Salehuddin
B.Eng (Civil-Structure) (UTM),
M.Eng. (Civil-Structure) (UTM)
E-mail: shamshinar@unimap.edu.my

Sara Yasina Yusuf
M.Eng.(Env.) (UPM), B.Eng. (Chemical) (USM)
E-mail: sarayasina@unimap.edu.my
04-9798979

Irnis Azura Zakarya
MSc (Env Eng) (UPM), B. Tech (Env) (USM)
E-mail: irnis@unimap.edu.my

Syakirah Afiza Mohammed
M.Eng (Civil) (UMK), B.Eng (Civil & Structural) (UMK)
04-9798854
E-mail: syakirahfiza@unimap.edu.my

Zaity Syazwani Mohd Odli
M.Eng. (Civil-Environmental Management) (UTM), B.Sc (Remote Sensing) (UTM)
E-mail: zaity@unimap.edu.my

Mr. Mokhzani Khair Ishak
B.Eng (Material Eng) (UniMAP)
Tel: 04-9797751
E-mail: mokhzani@unimap.edu.my

Mrs. Mrs. Zuraini Mohd Ideris
B.Eng. (Biochemical Eng.) (UKM)
Tel: 04-9798814
E-mail: zuraini@unimap.edu.my

Mr. Mohd Affandi Deraman
B.Eng. (Chemical) (UiTM)
Tel: 04-9798801
E-mail: mohdaffandi@unimap.edu.my

Mr. Ahmad Faizal Mansor
B.Eng (Civil) (UiTM)
Tel: 04-9794572
E-mail: faizalmansor@unimap.edu.my

Miss Nurul Huda Hashim
B.Eng. (Material Eng.), UniMAP
Tel: 04-9797702
E-mail: nurulhuda@unimap.edu.my

Miss Liyana Ahmad Sofri
B. Eng. (Civil) (UTM)
Tel: 04-9798588
E-mail: liyanasofri@unimap.edu.my

Mr. Saiful Azhar Bin Saad
M.Sc. (Env. Eng.) (UPM),
B.Eng (Hons) (Chemical)
E-mail: saifulazhar@unimap.edu.my

Mr. Ragunathan a/l Santiagoo
MSc (Env. Eng) (USM), B. Tech (Env),
Cert. (Pub. Health)
E-mail: raguna@unimap.edu.my

Mr. Abdul Haqi Ibrahim
M.Sc. (Env Eng) (USM),
B.Eng (Mineral Resources).
E-mail: abdulhaqi@unimap.edu.my

Miss Mahyun Ab. Wahab
M.Sc (Civil Eng.), B.Eng (Hons)
(Civil Eng). (USM)
E-mail: mahyun@unimap.edu.my

Mrs. Norazian Mohamed Noor
M.Sc (Env Eng), B.Eng (Chem. Eng). (USM)
E-mail: norazian@unimap.edu.my

Mr. Wan Mohd Sabki Wan Omar
M.Eng (Construction Eng.) (AIT),
B.Eng (Civil Eng.) (UTM)
E-mail: wansabki@unimap.edu.my

Mrs. Ayu Wazira Azhari
M.Sc (Env Mgt) (UKM), B.Eng
(Mineral Resources) (USM)
04-9798993
E-mail: ayuwazira@unimap.edu.my

Mrs. Naimah Ibrahim
M.Sc (Env Eng), B.App Sc
(Analytical Chem). (USM)
E-mail: naimah@unimap.edu.my

Mrs. Azlinda Abdul Ghani
M.Sc Env. (UPM), B.Tech Env. (USM).
E-mail: azlindaghani@unimap.edu.my

Mr. Che Zulzikrami Azner Abidin
B.Eng (Process) (UPM)
04-9798815
E-mail: zulzikrami@unimap.edu.my

Mr. Andi Julaini Jasni
Tel: 04-9798812
E-mail: andijulaini@unimap.edu.my
Mr. Mohd Shukri Mohd Soid
Tel: 04-9797721
E-mail: mohdshukri@unimap.edu.my

Mr. Syed Ahmad Rizman Syed Kamel
Tel: 04-9797721
E-mail: rizman@unimap.edu.my

Mr. Mohd Zahir Hanafi
Email: zahirhanafi@unimap.edu.my

Mrs. Nor Innar Md. Nor
Assistant Registrar
Tel: 04-9798629
E-mail: norinnar@unimap.edu.my

Mrs. Rushaniza Idawaty Ruslan
Administrative Assistant (Secretary)
Tel: 04-9798626
E-mail: rushaniza@unimap.edu.my

Mrs. Suzyyana Saafi Soo
Administrative Assistant (Finance)
Tel: 04-9798627
E-mail: suzy@unimap.edu.my

Mr. Ahmad Nazrin Hashim
Administrative Assistant (Clerical/Operational)
Tel: 04-9798628
E-mail: nazrihashim@unimap.edu.my

Mr. Syed Muhammad Faisal Syed Putra
Administrative Assistant (Clerical/Operational)
Tel: 04-9798627
E-mail: syedfaisal@unimap.edu.my

Mr. Mohd Shukri Ardzmi
General Office Assistant
Tel: 04-9798628
E-mail: mshukri@unimap.edu.my
BACHELOR OF ENGINEERING (HONOURS) ENVIRONMENTAL ENGINEERING

PEO BACHELOR OF ENGINEERING (ENVIRONMENTAL ENGINEERING)

Programme Objective 1
Graduates who are leaders in the field of environmental engineering or chosen field as demonstrated through career advancement.

Programme Objective 2
Graduates who are members and contribute to professional society.

Programme Objective 3
Graduates who pursue continuing education opportunities.

Programme Objective 4
Graduates who contribute through research and development.

Programme Objective 5
Graduates who are engineers and demonstrate entrepreneurial skills.

PROGRAM OUTCOMES-PO

PO 1 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in an environmental engineering discipline.
PO 2 Ability to identify, formulate and solve engineering problems.
PO 3 Ability to design a system, component or process to meet desired needs.
PO 4 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 5 Ability to use techniques, skills and modern engineering tools necessary for engineering practices so as to be easily adaptable to industrial needs.
PO 6 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.
PO 7 In-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 8 Understanding of professional and ethical responsibilities and commitment to the community.
PO 9 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 A recognition of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles
BACHELOR OF ENGINEERING (HONORS) (ENVIRONMENTAL ENGINEERING)

ACADEMIC SESSION (2011/2012)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EET 103/4 Electrical Technology</td>
<td>EKT 120/4 Computer Programming</td>
<td>EAT 213/4 Fluid Mechanics</td>
<td>EAT 237/3 Water Supply Engineering</td>
<td></td>
</tr>
<tr>
<td>EAT 131/4 Environmental Chemistry</td>
<td>EAT 101/4 Basic Ecology</td>
<td>EAT 231/3 Thermo dynamics</td>
<td>EAT 301/4 Air Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>EAT 102/4 Mechanics and Material Engineering</td>
<td>EAT 104/4 Fundamental of Chemical Engineering Processes</td>
<td>EAT 232/3 Environmental Engineering Skills</td>
<td>EAT 342/3 Noise Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>ECT 112/3 Eng Skills</td>
<td>EAT 233/3 Environmental Engineering Skills</td>
<td>EAT 332/3 Environmental Impact Assessment</td>
<td>EAT 343/3 Elective I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Non-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAT 101/3 Engineering Mathematics I</td>
<td>EAT 102/3 Engineering Mathematics II</td>
<td>EAT 203/3 Engineering Mathematics III</td>
<td>EAT 373/3 Statistical for Engineers</td>
<td></td>
</tr>
<tr>
<td>EUT 122/2 Skills and Technology in Communication</td>
<td></td>
<td></td>
<td>EAT 345/3 Hydrology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUW XXX/1 Co-curriculum</td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td>EUW 212/2 University English</td>
<td>EUW 322/2 Thinking Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW 410/2 University Malay Language</td>
<td>EUW 233/2 islamic and Asian Civilizations</td>
<td>EUW 332/3 Engineering Management System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EUT 440/3 Engineers in Society</td>
<td>EUW 235/2 Ethnic Relations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EUW XXX/2 Option Subject</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>semester</td>
<td>135</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL UNITS FOR GRADUATION IS 135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVES COURSES:
- EAT 447/3 Environmental Informatics, EAT 443/3 Built Environment,
- EAT 449/3 Environmental Process Control & Instrumentation, EAT 448/3 Remote Sensing

EAT XXX SUBJECT WITH LABS
EAT XXX SUBJECTS WITHOUT LABS
BACHELOR OF ENGINEERING (HONOURS) BUILDING ENGINEERING

PEO BACHELOR OF ENGINEERING (BUILDING ENGINEERING)

Programme Objectives 1
Graduates are leaders in the field of environmental engineering or chosen field as demonstrated through career advancement

Programme Objectives 2
Graduates who are members and contribute to professional society

Programme Objectives 3
Graduates who pursue continuing education opportunities

Programme Objectives 4
Graduates who contribute through research and development

Programme Objectives 5
Graduates who are entrepreneur and demonstrate entrepreneurial skills.

PROGRAM OUTCOMES-PO

PO 1 Ability to acquire and apply knowledge of mathematics, science, engineering and an in-depth technical competence in an environmental engineering discipline.
PO 2 Ability to identify, formulate and solve engineering problems.
PO 3 Ability to design a system, component or process to meet desired needs.
PO 4 Ability to design and conduct experiments, as well as to analyze and interpret data.
PO 5 Ability to use techniques, skills and modern engineering tools necessary for engineering practices so as to be easily adaptable to industrial needs.
PO 6 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.
PO 7 In-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 8 Understanding of professional and ethical responsibilities and commitment to the community.
PO 9 Ability to function on multi-disciplinary teams.
PO 10 Ability to communicate effectively.
PO 11 A recognition of the need for, and an ability to engage in life-long learning.
PO 12 Demonstrate understanding of project management and finance principles
BACHELOR OF ENGINEERING (HONORS) (BUILDING ENGINEERING)
ACADEMIC SESSION (2011/2012)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINEERING CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EET 103/4 Electrical Technology</td>
<td>EKT 120/4 Computer Programming</td>
<td>EAT 251/3 Structural Theory</td>
<td>EAT 258/3 Building Material Engineering</td>
<td>EAT 314/4 Geotechnical Engineering</td>
</tr>
<tr>
<td>EAT 102/4 Mechanics and Material Engineering</td>
<td>EAT 113/4 Mechanics of Materials</td>
<td>EAT 213/4 Fluid Mechanics &</td>
<td>EAT 208/3 Environmental Law, Health and Safety</td>
<td>EAT 351/3 Concrete Building Design I</td>
</tr>
<tr>
<td>EAT151/3 Introduction to Building Engineering</td>
<td>EAT 112/4 Geomatic Engineering</td>
<td>EAT 212/4 Soil Mechanics</td>
<td>EAT 253/3 Structural Analysis I</td>
<td>EAT 353/3 Structural Analysis II</td>
</tr>
<tr>
<td>ECT 112/3 Eng Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQT 101/3 Engineering Mathematics I</td>
<td>EQT 102/3 Engineering Mathematics II</td>
<td>EQT203/3 Engineering Mathematics III</td>
<td>EQT 373/3 Statistic for Engineers</td>
<td></td>
</tr>
<tr>
<td>EUT 122/2 Skills and Technology in Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED UNIVERSITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUW XXX/1 Co-curriculum</td>
<td>EUW 224/2 Engineering Entrepreneurship</td>
<td>EUW 212/2 University English</td>
<td>EUW 233/2 Islamic and Asian Civilizations</td>
<td>EUW 322/2 Thinking Skills</td>
</tr>
<tr>
<td></td>
<td>EUW 410/2 University Malay Language</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

135 17 18 19 19 19 14 4 13

TOTAL UNITS FOR GRADUATION IS 135

Elective Courses:
Elective I: EAT454/3 Timber and Masonry Design OR EAT456/3 Foundation Engineering
Elective II: EAT411/3 Advanced Concrete Building Design OR EAT414/3 Construction Methods & Control
Elective III: EAT453/3 Advanced Structural Analysis OR EAT415/3 Advanced Steel Building Design

www.unimap.edu.my
EAT101/4 BASIC ECOLOGY

Course Synopsis
Definition of ecology, ecosystems and component of basic ecology. Energy flow in ecosystems; Organism, environmental and food chain; Physical Environment; Population characteristic, population growth, factors in population growth, competition among species, symbiosis, relationship between human and nature of population; Community structure, dominant species comparison, community process development, community equivalent and parasitism; Global Environmental Changes.

Microbiology
Introduction, soil formation and composition, microbial ecology Microorganisms: Culturing and staining methods for identification of microorganisms; microorganisms in the environment: eucaryotes and procaryotes, viruses, bacteria, viruses, algae, fungi, protozoa and worms; and microorganisms based on the sources of energy and carbon.

Biochemistry : biochemical pathways used by microorganisms for oxidation of carbohydrates, proteins, and fats in order to obtain energy for their life processes; i.e. Embden-Meyerhof-Parnas pathway; Tricarboxylic Cycle; Concept of energy; ADP and ATP; Aerobic and anaerobic metabolism; and principal microbial oxidation and reduction reactions.

Course Outcomes

CO1:
Ability to define and describe basic concept of ecology and environment.

CO2:
Ability to define and describe the energy flow in ecosystems.

CO3:
Ability to define and describe the relationship among the organism in ecosystems.

CO4:
Ability to describe the basic concepts of biochemistry and metabolism pathways of microorganisms in water and wastewater treatment.

CO5:
Ability to describe the basic concepts of soil composition and metabolism pathways of microorganisms in soil.

References

EAT102/4 MECHANICS AND MATERIAL ENGINEERING

Course Synopsis

Labs
1. Equilibrium of beam
2. Tensile test
3. Rockwell Hardness Test

Course Outcomes

CO1:
Ability to add forces and resolve them into components using Parallelogram Law as well as Cartesian Vector

CO2:
Ability to solve particles and rigid body equilibrium problems using the equations of equilibrium

CO3:
Ability to draw shear force and bending moment diagram

CO4:
Ability to solve problems which relate to kinetic of a particle
CO5:
Ability to explain basic concepts of material strength as well as their mechanic properties

References

EAT104/4
FUNDAMENTAL OF CHEMICAL PROCESSES

Course Synopsis
Introduction to chemical engineering calculation, process variables and material balance.
Introduction to chemical process engineering: Dimensions, units and conversions, process and process variables, process flow diagram and PID diagram, chemical compositions, temperature and pressure measurements, chemical reaction terminology and applications (stoichiometry, limiting reactant, % excess reactant, degree of conversion), process material balance calculation, recycling, bypassing and combustion reaction.

Energy balances
Form of energy, first law of thermodynamics, kinetic and potential energy, energy balance on closed and open system, Steam tables. Balance on nonreactive and reactive processes. Introduction to heat transfer.

Labs:
1. HYSIS software for material balance
2. Temperature measurement
3. Heat conduction
4. Free and forced convection
5. Radiation

Course Outcomes
CO1:
Ability to understand, and solve problems related to all engineering calculation.

CO2:
Ability to understand, explain and solve problems on material balances.

CO3:
Ability to understand, explain the theory and solve calculation on energy balances and heat transfer.

References

EAT112/4
GEOMATIC ENGINEERING

Course Synopsis
In this course student will be introduce basic surveying involved in engineering. Starting from linear measurement on plane. Student will do leveling after they learn 2 different data logging. With their knowledge in tapping and leveling, they have to do traversing and tachymetry. From all the data they have, student will ask to transform all the data to map using engineering drawing and AutoCAD. Lastly, student will be test in real work, in geomatic camp.

Labs:
1. Introduction to Distance measurement and Bearing
2. Introduction to Levelling Work (Collimation and Rise & Fall Method)
3. Introduction to Geomatic Instruments and Auto Level work (Sg. Batu Pahat)
4. Traversing With Compass and Theodolite
5. Introduction to Tacheometry
6. Introduction to Electronic Distance Measurement (EDM) With Total Station
7. Geomatic Camp

4. Jacob A. Mouljin, Michiel Makkee, Annelies van Diepen, Chemical process technology, John Wiley and Sons, 2001
5. Teh Fu Yen, Chemical processes for environmental engineering, Imperial College Press, 2007
Course Outcomes

CO1:
Ability to understand basic concept of geomatic.

CO2:
Ability to perform surveying task and procedures.

CO3:
Ability to transform data to other format (e.g.: map, excel and etc)

References
2. Ab. Hamid Mohamed, Asas Ukur Kejuruteraan, Penerbit Universiti Teknologi Malaysia

EAT113/4
MECHANICS OF MATERIALS

Course Synopsis
This course will be focused on mechanics of material which begins with the concept of stress and strain. The important mechanical properties of materials and separate treatments of axial load, shear, torsion, and bending are also discussed. The transverse shear along with a discussion on the state of stress results from combined loadings will be covered in this course, as well as the concepts for transforming multiaxial states of stress and in similar manner, the methods for strain transformation. For a further summary, student will be taught the applications of beams and shaft that cover on the design and deflection parts. Besides that the buckling of column also will be exposed to the student.

Labs:
1. Torsion
2. Bending Moment
3. Strut Buckling
4. Bending Moment

EAT131/4
ENVIRONMENTAL CHEMISTRY

Course Synopsis

General chemistry
Stoichiometry, General Chemistry, Physical Chemistry, Organic Chemistry, Colloidal Chemistry

Water
Water chemistry: Properties of water and solutions, physical structure and properties of water and solutions, solution equilibria, solubility product, acids and bases, and buffer solutions. Water Quality Parameters: parameters used in water and wastewater analysis; i.e. COD, BOD, DO, hardness, nutrients, turbidity, color, alkalinity, solids, chloride, oil and grease, volatile acids, iron and manganese, fluoride, and sulphate.

Solid Waste
Soil chemistry: Inorganic and organic components of soil; chemical properties of soil, inorganic and organic geochemistry

Air
Atmospheric Chemistry (stratosphere stratospheric perturbations,
Course Outcomes

CO1:
Ability to explain basic concepts of fundamental chemistry.

CO2:
Ability to define and discuss the chemical principles of water and wastewater pollution or treatment.

CO3:
Ability to describe and calculate soil chemistry and chemical reactions involved.

CO4:
Ability to discuss the chemistry, photochemistry and cyclic processes in atmospheres.

References

Ambient Air Quality Guideline, (Motor Vehicle Noise) Regulations 1987, Factories and Machinery Act

Solid waste (Scheduled Wastes) Regulations 2005,

Health and Safety
Occupational Safety and Health Act 1994 (Act 514), Use and Standards of Exposure of Chemicals Hazardous to Health Regulations (USECHH) 2000, Control of Industrial Major Accident Hazards Regulations (CIMAH)1996, RCRA, USEPA and Classification, Packaging and Labelling of Hazardous Chemicals Regulations (CPL)1997, Material Safety Data Sheet, Industrial Hygiene, Toxicology, and Responsible Care Codes of Management Practices

Course Outcomes

CO1:
Ability to comprehend and explain the basic and legal requirement of Malaysian major laws related to environment.

CO2:
Ability to comprehend and discuss the major regulations of Occupational Safety and Health Act enforced in Malaysia.

CO3:
Ability to describe and outline the procedures in chemical handling and management at workplace.

CO4:
Ability to identify and utilize knowledge related to health and safety in working place.

References

Labs:
1. Sieve and Hydrometer Analysis
2. Liquid Limit and Plastic Limit Test
3. Constant Head Permeability Test
4. Standard Proctor Compaction Test
5. Direct Shear Test on Sand

Course Outcomes

CO1:
Ability to identify and differentiate the different types of soil and their properties and classification of soil.

CO2:
Ability to discuss the seepage and permeability concept and solve problem involving flow nets

CO3:
Ability to solve calculation problem using mechanics involving physical properties, compaction and effective stress.

CO4:
Ability to employ the shear strength theory to determine shear strength parameters of soils.

CO5:
Ability to explain the process of consolidation and solving problems using one-dimensional consolidation theory.

References

EAT213/4
FLUID MECHANICS AND HYDRAULICS

Course Synopsis

This course presents the study of the mechanics of water. In fluid mechanics, other fluids, including oil and gasses are studied. The student will be taught about properties of fluids, fluid static and kinematics, Bernoulli’s equation, momentum equation, analysis of flow in open channel and pipeline system. This course will also cover the transportation and metering of fluids such as pumps and turbines. At the end of the course, students should be able to apply the theory to solve problem related to flow of fluids.

Labs:
1. Osbourne Reynolds demonstration unit.
2. Flowmeter measurement apparatus.
3. Serial/Parallel pump test unit.
4. Bernoulli’s theorem demonstration.
5. Flow over weirs.
6. Impact water jet.

Course Outcomes

CO1:
Ability to define and describe the properties of fluids.

CO2:
Ability to identify and analyse some fluid static and fluid dynamic theories and applications.

CO3:
Ability to describe and solve problems related to fluid flow in open channel system.

CO4:
Ability to describe and solve problems related to fluid flow in pipeline system.

References

EAT231/3
THERMODYNAMICS

Course Synopsis

Basic Concept of Thermodynamics
Introduction of thermodynamics system, properties of pure substance, heat and work, Laws of Thermodynamics (1st, and 2nd Law), entropy, power and refrigeration cycle.

Course Outcomes

CO1:
Ability to comprehends the basic concept of Thermodynamics

CO2:
Ability to describe and calculate thermodynamics properties in phase equilibrium.

CO3:
Understand first and second law of thermodynamics, concept of entropy base through its application to ideal and irreversible processes, and know how to apply the knowledge.

CO4:
Ability to apply thermodynamics concept on Environmental Engineering Issues.

References

EAT232/3
FUNDAMENTAL OF ENVIRONMENTAL ENGINEERING

Course Synopsis

Water and wastewater
Water and wastewater parameters and analysis.

Solid waste
Elements of solid waste such municipal solid waste characterization, waste handling, generation rate, and disposal method

Air
Horizontal atmospheric motion, vertical motion in the atmosphere, wind, temperature inversion, fumigation, stagnation. Source of air pollution - oxidation and reduction process, stationary source, mobile source, area source

Course Outcomes

CO1:
Ability to define and calculate water and wastewater quality parameters.

CO2:
Ability to define and discuss waste generation & available method of disposal.

CO3:
Ability to discuss the effect of meteorology condition to the atmospheric quality.

CO4:
Ability to discuss the sources of air pollutants as well as their effects.

References

EAT233/3
ENVIRONMENTAL ENGINEERING SKILLS

Course Synopsis

Introduction to surveying. Covering in particular: surveying and setting out; level and levelling; traversing and distance measurement. Introduction to AutoCAD software; Drawing and editing; Layer control and properties modification; Hatching and dimensioning; Text and template drawing. Introduction to GIS and its components, basic GIS analysis, the output of GIS and finally application of GIS in environmental field.

Course Outcomes

CO1:
Ability to perform surveying task and procedures.

CO2:
Ability to practice AutoCAD software package.

CO3:
Ability to produce detail mapping using geographic information systems (GIS).

References

EAT346/4
MASS TRANSFER

Course Synopsis

The study of mass transfer is of particular interest to environmental engineers which involves processes that move chemicals through the air,
surface water, subsurface environment, or engineered systems. Transport processes move pollutants from the location at which they are generated, resulting in impacts that can be distant from the pollution source. In addition, environmental engineers make use of the contents of this course in the design of emission-control systems. In this course the lectures discuss some of the processes that transport pollutants in the environment and in engineered systems. The goals of this discussion are twofold: to provide and understanding of the processes that cause pollutant transport, and to present and apply the mathematical formulas used to calculate the resulting pollutant fluxes.

Labs:
1. Determination of flooding point and loading point in gas absorption system
2. Absorption of carbon dioxide into water in gas absorption system
3. Filter press system
4. Liquid diffusion system
5. Evaporation system
6. Field trip to a selected facility related to mass transfer application

Course Outcomes

CO1:
Ability to understand and explain, and measure the diffusion processes in gases, liquids and solid in steady state

CO2:
Ability to understand, explain and measure mass transfer occurs in various phases and unsteady-state diffusion.

CO3:
Ability to apply knowledge of mass transfer in separation processes.

CO4:
Ability to understand and apply knowledge of transport and chemical substances within the three environmental geospheres: water, air and earthen solids.

References

2. Warren Lee McCabe, Julian Cleveland Smith, Peter Harriott. Unit operations of chemical engineering, 7th Ed.

Course Outcomes

CO1:
Ability to discuss and determine the component and principle available in soil properties

CO2:
Ability to utilize and apply the knowledge of groundwater flow and transportation process in porous media.

CO3:
Ability to apply knowledge of mass transfer in separation process.

CO4:
Ability to understand and apply knowledge of transport and chemical substances within the three environmental geospheres

References

5. Raymond Nen Yong, Geoenvironmental engineering: contaminated soils, pollutant fate and mitigation, CRC Press LLC, 2001
EAT237/3
WATER SUPPLY
ENGINEERING

Course Synopsis
This course will be focused on water sources and usage, method on estimating water demand, water quality characteristics and legislations, water treatment processes and water distribution and reticulation system. Special focus will be given on the design of raw water treatment comprising pre-treatment, primary treatment (coagulation, flocculation, sedimentation, filtration, disinfection) and advanced water treatment processes. From the course, students will also be exposed to the design guidelines of water supply system which is applied in Malaysia.

Course Outcomes

CO1:
Ability to identify water sources and consumption and to forecast water demand.

CO2:
Ability to describe and evaluate water quality required in water supply system.

CO3:
Ability to identify the technology of water treatment processes and design water treatment unit.

CO4:
Ability to describe and analyze water distribution system.

References

EAT 250/3
BUILDING ENGINEERING
SKILLS

Course Synopsis
The course equips students with the basic computer-aided drawing skill for general engineering drawing, and especially the drawing for Civil engineering profession. This includes the structural plan, cross section drawing and structural detailing. Through lectures, students will learn the basic characteristics of professional civil engineering drawing and computer-aided drawing program. Through hands-on sessions using drawing software packages, this course enables the students to have first hand practice on the drawing for some idealized and actual projects. Mini project cover several disciplines of civil engineering profession will be integrated through a series of these hand-on sessions.

Labs:
1) Introductions to basics engineering drawing
2) Geometrical construction
3) Projection systems
4) Isometric and oblique sketches
5) Cross-sectioned views
6) Dimensioning and geometrical tolerance
7) Working drawing and detailing
8) Introduction to Computer Aided Drafting
9) Basic Construction techniques
10) Basic Editing
11) Dimensioning 2D drawing
12) Creating 2D drawing (geometric constructions)
13) Creating 2D section views
14) Introduction to 3D solid modelling
15) To produce 2D drawing from 3D solid modelling

Course Outcomes

CO1:
Ability to understand the basic characteristic and features of the computer-aided engineering drawing and their use in design and construction industry.

CO2:
Ability to relate the basic engineering design to the actual construction via graphical presentation.

CO3:
Ability to communicate technical details via computer-aided tools.

References
EAT251/3
STRUCTURAL THEORY

Course Synopsis

This course provides students with a clear and thorough presentation of the theory and application of structural analysis as it applies to trusses, beams, and frames. It introduces analysis of statically determinate structures for trusses. Besides that, it also introduces deformation using virtual work for trusses, beams, and frames and also integration and moment area method for the beams. Cables and arches also will be discussed at the end of this course.

Labs:
Lab 1: Deflection truss
Lab 2: Portal frame
Lab 3: Deflection of frame
Lab 4: Two Hinged Arch

Course Outcomes

CO1:
Ability to identify and analyze of statically determinate structures.

CO2:
Ability to analyse and illustrate the internal loading developed in structural members.

CO3:
Ability to analyze the deformation of statically determinate structures using geometrical method.

CO4:
Ability to compute the deformation of determinate structure based on virtual work method.

References

EAT253/3
STRUCTURAL ANALYSIS I

Course Synopsis

This course provides student with understanding of influence lines for statically determinate structures and approximate analysis of statically indeterminate structures. Student also will be introduce with beam, trusses and plane frame analysis using slope deflection and moment distribution methods.

Course Outcomes

CO1:
Ability to analyze of statically determine structures for beam, trusses and frame using influence line method

CO2:
Ability to analyze of statically indeterminate structures for beam, trusses and frame using approximate analysis

CO3:
Ability to analyze structures using the displacement method of analysis by developing the slope deflection equation.

CO4:
Ability to analyze structures using the displacement method of analysis by applying the method of moment distribution.

References

EAT257/3
BUILDING SERVICES ENGINEERING

Course Synopsis

This course is designed to provide students with an understanding of specification, design, installation and management of all the engineering services associated with the built environment. It provides students with basic knowledge in building infrastructure which includes assess road or pavement, sewerage design,
EAT258/3
BUILDING MATERIALS ENGINEERING

Course Synopsis

This course exposes students to different types of construction materials in building engineering. It covers type and function of cement, function of aggregates in concrete, water, admixtures, properties of fresh and hardened concrete, concrete mix design, manufacturing concrete on site. Properties and application of timbers, types and characteristics of bricks and blocks, ferrous and non-ferrous metals, and other current materials in the construction industry are also discussed.

Labs:
1. Common specified tests on cement and aggregates
2. Concrete mix design
3. Strength and material tests.

Course Outcomes

CO1: Ability to describe and discuss the importance of building services in their buildings’ designs.

CO2: Ability to evaluate the choice of building services components for better buildings’ design and long term building operational sustainability.

CO3: Ability to understand the Mechanical & Electrical distribution systems in modern buildings and problems related to design, operation and maintenance.

CO4: Ability to apply the knowledge gain above for various application related to civil engineering work and discuss the innovations, new applications and new construction material for sustainable development.

References

EAT301/4
AIR POLLUTION ENGINEERING

Course Synopsis

This subject discuss in detail about air pollution control. As an introduction, students will be introduced to air pollution control philosophies and regulations which are relate to air pollution control in Malaysia. Meteorological aspects which control the transport of air pollutants are also
discussed in this subject. Apart of that, this subject will explain and discuss the general idea on how to control air pollution, modeling the pollutant dispersion as well as designing air pollution control equipments.

Labs:
1. Air Pollution Control Device – Cyclone
2. Air Pollution Control Device - ESP
3. Air Pollution Control Device – Scrubber
4. Air Pollution Control Device - Absorption

Course Outcomes

CO1:
Ability to apply air pollutant concentration model to solve problems relates to air pollution control.

CO2:
Ability to discuss the general ideas in air pollution control.

CO3:
Ability to identify and design suitable air pollution control device.

References

EAT303/4
WASTE WATER ENGINEERING

Course Synopsis

This course introduce about wastewater management. Student will be introduced about terms related with wastewater and how to calculate flow rate and population equivalent. From this calculation, student will be able to design basic sewerage. Student also will learn about physical and biological unit operation related with wastewater treatment. In this course also, student will learn how to design wastewater treatment plant with applying all the knowledge in wastewater treatment theory learned before.

Labs:
1. Aeration study
2. Membrane Filtration
3. Design project – sewerage system
4. Design project – wastewater treatment plant

Course Outcomes

CO1:
Ability to define and calculate wastewater flow rates and population equivalent (PE) and able to design sewerage.

CO2:
Ability to differentiate between physical, chemical and biological treatment.

CO3:
Ability to design basic structure of wastewater treatment plan.

References
5. Syed R. Qasim, Wastewater treatment plants: planning, design, and operation, CRC Press, 1999
Course Outcomes

CO1:
Ability to analyze bearing capacity and design for shallow foundations and deep foundations.

CO2:
Ability to describe and design various concrete retaining walls based on lateral earth pressure.

CO3:
Ability to conduct slope stability analysis and landslide investigations.

CO4:
Ability to discuss and identify common sampling methods for subsoil exploration.

**EAT 332/3
ENVIRONMENTAL IMPACT ASSESSMENTS**

Course Synopsis

Introduction to Environmental Impact Assessment; Principles and perspective of EIA; Overview on EIA: Screening, Scoping & Term Of Reference, Impact Analysis, Mitigation & Impact Management; Prediction of environmental impacts; EIA Documentation and Environmental Management Plan (EMP); Aims & key components of EIA implementation and follow-up; Reviewing process in EIA; Decision making in the EIA process; Social impact assessment.

Course Outcomes

CO1:
Ability to understand the steps required in performing EIA report.

CO2:
Ability to understand and apply some of the basic tools available for predicting environmental impacts.

CO3:
Ability to apply the knowledge and prepare EIA documentation.

CO4:
Ability to apply the knowledge and prepare EMP documentation.

CO5:
Ability to analyze the social impact of project activities.

References

4. John Glasson, Riki Therivel, Andrew Chadwick, Introduction to environmental impact assessment, Tylor and Francis Group, 2005

**EAT 341/3
SOLID AND HAZARDOUS WASTE ENGINEERING**

Course Synopsis

Students will be introduced to elements of solid waste such solid waste handling, storage, collection and transport; waste treatment and disposal methods, including biological and chemical treatment, incineration, pyrolysis, waste minimization. Students will also be enriched with characteristic of hazardous waste, handling, storage and collection, treatment and disposal methods, physicochemical and biological methods, stabilization & various ultimate disposal options such as solidification, incineration and secure landfilling.

Course Outcomes

CO1:
Ability to discuss current waste management practices.

CO2:
Ability to describe and analyze the process of solid waste reduction and treatment.

CO3:
Ability to plan and design landfill facilities.

CO4:
Ability to analyze treatment processes and design treatment facilities of hazardous waste.

References

1. Tchobanogous, Theisen and Vigil, Integrated Solid Waste Management:
EAT342/3
NOISE POLLUTION
ENGINEERING

Course Synopsis
Characteristics of sound, Sources, effect and regulation of noise pollution, Measurement and Analyses of noise Noise control, Fundamentals and Basic Concepts of Vibration, Undamped and Damped Free Vibrations

Labs
1. Measurement and Analyses of Noise
2. Effect Noise in Building Materials
3. Pendulum System:
 (a) Simple Pendulum System
 (b) Compound Pendulum System

Course Outcomes
CO1:
Ability to explain and discuss the concept of noise control.

CO2:
Ability to ability to analyse what is noise and vibration.

CO3:
Ability to explain and analyse noise pollution level and know how to overcome it according to the law

CO4:
Ability to describe and compute different system of vibration.

CO5:
Ability to apply knowledge and concept of vibration in solving the problem.

References

EAT343/3
PUBLIC HEALTH AND OCCUPATIONAL HYGIENE

Course Synopsis
General
Introduction to epidemiology

Water
Safe drinking water; dilemma in compliance; the relation between chemical contaminants in drinking water and public health, control of water-borne diseases.

Air and Noise
Air pollutants and its effect, indoor air pollution, heat and temperature extreme hazard, noise and and vibration hazard.

Course Outcomes
CO1:
Ability to discuss environmental health in the tropics and relate to water supply, sanitation and social practices

CO2:
Ability to asses various pollutants and other hazards in nature and indoors and identify measures to reduce pollution

CO3:
Ability to identify, evaluate and control occupational hazards

CO4:
Ability to apply OSHA information standards for safety and environmental management

References
Course Outcomes

CO1: Ability to describe the requirements in implementing an ISO 14001, as well as EMS costing and audits.

CO2: Ability to describe and outline the EIA process & methods in Malaysia.

CO3: Ability to identify and describe the measuring instruments and calibration systems in environmental management.

CO4: Ability to identify and explain the quantitative risk assessment.

References

5. Aminatuzuhariah Megat Abdullah, Introduction to environmental management system, UTM, 2007

EAT 344/3 ENVIRONMENTAL MANAGEMENT SYSTEM

Course Synopsis

Introduction; Design and implementation of ISO 14001; Types of environmental management standards – EMS, Environmental Audit, Environmental Labeling, Environmental Performance Evaluation, Life Cycle Analysis; Risk assessment, analysis and management; Cleaner production

EAT 345/3 HYDROLOGY

Course Synopsis

Introduces the fundamental of hydrological process such as hydrologic cycle, atmospheric circulation, precipitation, evaporation, evapotranspiration and infiltration. Analysis in hydrologic will be covered including watershed concepts, rain fall-runoff, unit hydrograph and synthetic unit hydrograph. Focus will also be on the frequency analysis which cover the probability concepts, random variables and probability distribution, return period, common probabilistic models, graphical presentation of data and regional analysis. Apart of that, flood routing chapter will cover hydrologic routing, hydrologic river and reservoir routing, movement of flood wave and kinematic wave routing.

Course Outcomes

CO1: Ability to discuss and perform the computation for hydrological process.

CO2: Ability to compute the flood hydrographs using various hydrograph methods

CO3: Ability to analyze and apply the frequency analysis in hydrology.

CO4: Ability to compute the flood routing.

References

EAT351/3 CONCRETE BUILDING DESIGN I

Course Synopsis

This course is designed to provide the student with a understanding of the limit state design concept and analysis of sections for bending; to provide a basic understanding of standard
methods of analysis and design of reinforced concrete behaviour (including an understanding of capabilities and limitations); and to ability to analyze and design reinforces concrete structural elements. Among the topics discussed are objectives and methods of design, code of practice, analysis and design of sections for moment, design for shear, checking for deflection and cracking, durability and detailing requirements. Design of simply supported, continuous beams and cantilever beam, design of one way and two way restrained and simply supported slab and design a column. The syllabus is cover ultimate and serviceability limit state. Design resistance typical structural element and detailing.

Labs:
1. Properties of cement
2. Properties of aggregate
3. Concrete mix design and test on wet concrete
4. Reinforcement properties

Course Outcomes

CO1:
Ability to explain limit state design concept and analysis of sections for bending.

CO2:
Ability to design simply supported and continuous beam and illustrate beam detailing.

CO3:
Ability to design reinforced concrete slab for one way and two way slab and illustrate slab detailing.

CO4:
Ability to design reinforced concrete column and illustrate column detailing

References

2. IStructE. Manual for the Design of Reinforced Concrete Building Structures. The Institution of Structural Engineer. 1985

EAT352/3
CONCRETE BUILDING DESIGN II

Course Synopsis

This course is designed to expose students to a wider scope of reinforced concrete design. As a successor to the Concrete Building Design I, the topics covered are design of staircases, footings, pile caps, retaining walls, multi storey and pre-stressed concrete design which cover topics on principle and methods of pre-stressing, stress limit, losses and selection of section. As an addition, since IBS is one of the national agenda in construction, the introduction to precast concrete building is also introduced.

EAT353/3
STRUCTURAL ANALYSIS II

Course Synopsis

This course provides student with understanding of matrix analysis for statically indeterminate structures
EAT354/3
STEEL BUILDING DESIGN

Course Synopsis

This course provides a basic understanding of behavior and design of steel members, connections and structures. At the end of this unit, students should be familiar with the behavior of steel structures; in particular the various forms of buckling and failure, particularly those associated with tension, bending, shear compression, combined actions and connections; have a working knowledge of BS, and be competent in designing a simple structure to BS. The syllabus comprises the behavior of steel members and structures - properties of cross-sections, local buckling, elastic beams, plastic beams, tension members, compression members, effective lengths and elastic in-plane frame buckling, local and lateral buckling of beams, in-plane bending of beam-columns, lateral buckling of beam-columns, biaxial bending of beam-columns, bolted and welded-connections.

Course Outcomes

CO1: Ability to analyze the statically indeterminate beam, trusses and frame by applying the force or flexibility method.

CO2: Ability to analyze and solve indeterminate structural problems for prismatic and non-prismatic members.

CO3: Ability to analyze the statically indeterminate beam, trusses and frame by using the stiffness method.

CO4: Ability to derive the finite elements equation and apply in analysis of structures.

References

EAT355/3
COMPUTER APPLICATION IN BUILDING ENGINEERING

Course Synopsis

The course is designed to provide the student with an understanding of engineering drawing conventions in building engineering, and in particular, how engineering drawing can be both a design tool and a means of communicating precise instructions to engineers and crafts people. Special focus will be given on switching from architectural to structural drawing, applied load, transfer load, simplified analysis and design. From the course, students will also be introduce to basic computer application for structural design to get better understanding how the load applied, transfer, analyse and design.

Course Outcomes

CO1: Ability to describe basic concept of steel members, connections and structures behavior.

CO2: Ability to apply the steel design concept.

CO3: Ability to design steel structures elements.

References

4. Punmia, B.C., Ashok Kumar Jain & Arunkumar Jain, “Design of Steel Structures”,
Course Outcomes

CO1: Ability to interpret architectural drawing and construct into structural drawing propose; to identify structural layout.

CO2: Ability to convey with sketching, manual and computer-aid-drawing application.

CO3: Ability to identify and analyse non-structural and structural component; to define loading distribution and transfer.

CO4: Ability to analyse and design the structures using simplified approach and computer application.

References

EAT 357/3
CONSTRUCTION MANAGEMENT

Course Synopsis

This course is designed to provide students with the knowledge of subject area; ability to apply tools in a project environment; demonstrate competence in learning and evidence generating to sustain competency.

The syllabus comprises scope management including project authorization, scope definition, control and finalization. Cost management including project costing, resource planning, budgeting and controlling financial completion are also emphasized. In addition, this course will also expose students to the time management including activity sequencing, duration estimating, scheduling, progress control, monitoring and forecasting.

Course Outcomes

CO1: Ability to discuss and describe the general project management principles of construction industry.

CO2: Ability to describe three major components in project management (planning, execution and project evaluation).

CO3: Ability to use project planning and scheduling technique available in construction management.

CO4: Ability to analyze the project cash flow requirements, project monitoring, and control.

References

EAT 358/3
BASIC BUILDING ENGINEERING QUALITIES

Course Synopsis

This course focuses on introduces principles area of construction law and understanding the relationship between contract documents and the construction process. This includes the contractual relationships, legal roles and responsibilities, and contract types. Legal issues that often result in construction disputes including differing site conditions, time and schedule impacts, change orders and changed conditions also will be explored. Review analysis of the method used in presenting and solving construction control and contract dispute resolution including negotiations, alternative dispute resolutions, and litigation of disputes.

Procurement methods, tenders and their assessment, risk and insurance, contractual claims, the law of tort and contract, the law of evidence, statutory duties in respect of construction projects also included in this course.

References

Course Outcomes

CO1:
Ability to understand principles of construction law and contracts.

CO2:
Ability to review and analyze method use in presenting and solving construction disputes.

CO3:
Ability to interpret procurement methods, tenders and risk assessment related to construction.

CO4:
Ability to review and evaluate the procurement law in respect of construction projects.

References

EAT 411/3 ADVANCED CONCRETE BUILDING DESIGN

Course Synopsis

This course provides additional knowledge on the aspect of reinforced concrete structural elements. As a continuation to the Concrete Building Design 1 and 2, the topics discussed include analysis and design of ribbed, waffle and flat slabs, water retaining structures, walls, corbel and Nibs. Methods of deflection calculation, design of elements for torsion and analysis and design of raft foundation are also covered.

Course Outcomes

CO1:
Able to acquire an advanced and comprehensive overview of the behavior of concrete buildings under load.

CO2:
Able to carry out routine conception, analysis and design of typical buildings and structural elements in accordance with standard procedures.

CO3:
Able to draw and specify work for conventional building design, mechanical and electrical work.

CO4:
Able to conduct flexural analysis of continuous beam, slabs, foundation and wall.

References

EAT 414/3 CONSTRUCTION METHODS AND CONTROL

Course Synopsis

This course has been developed to provide the understanding of construction methods, strategies, equipment and machinery in a range of construction activities and an understanding of the principles involved in the design for construction activities.

Course Outcomes

CO1:
Able to understand various construction methods.

CO2:
Ability to design building infrastructures

References

3. H. Leslie Simmons, “Construction principles, Materials, and Methods
EAT 415/3
ADVANCED STEEL BUILDING DESIGN

Course Synopsis

This course covers the analysis and design of multi-storey braced and unbraced steel frames and types of connections used for simple, semi-continuous, and continuous construction. For un-braced steel frame wind-moment method is introduced. Besides multi-storey steel frame, this course also covers the design of composite beam, plate girder, and portal frame. For composite beam design, linear interaction method and stress block methods are discussed. For plate girder, the design covers the stiffening of the web. For portal frame, elastic and plastic designs are taught.

Course Outcomes

CO1:
Able to understand structural behavior of steel members and connections

CO2:
Able to describe buckling behavior and connection design

CO3:
Able to use software in structural steel design

References

EAT 433/3
ENVIRONMENTAL ENGINEERING DESIGN

Course Synopsis

Principles and design concepts of treatment units and processes, detailed and advanced design of environmental pollution control (i.e., treatment and disposal) systems for water, wastewater, air, noise, disposal of solid waste.

Labs:
Integrated Environmental Engineering Design

Course Outcomes

CO1:
Ability to apply the concepts of bioremediation in soil, groundwater and contaminated site treatment.

CO2:
Ability to design treatment units complying to the standard practice in Malaysia

References

5. P. Aarne Vesilind, Wastewater treatment plant design, 2003, IWA

EAT 441/3
ENVIRONMENTAL REMEDIATION

Course Synopsis

This course provides a general overview of the environmental remediation with emphasis on soil, ground water and aquifer contaminants. The student will be taught about the source and behaviour of subsurface contaminants, contaminants tracer study and remediation planning. Student will also be enriched with bioremediation technologies to recover the contaminants.

Course Outcomes

CO1:
Ability to apply the concepts of bioremediation in soil, groundwater and contaminated site treatment.

CO2:
Ability to analyse the characteristics of
CO3:
Ability to determine the contaminants behaviors of soil and groundwater.

CO4:
Ability to apply the knowledge of bioremediation technology to recover the contaminants.

References

Course Outcomes

CO1:
Ability to describe and analyze the concepts of thermal control through the building envelope.

CO2:
Ability to analyze heat exchange mechanisms and compute the thermal interactions in building.

CO3:
Ability to construct skills in designing sustainable building performance with respect to the energy efficiency.

CO4:
Ability to select and evaluate the methods of active and passive control and design approaches in a physical building environment.

References
EAT 445/2
FINAL YEAR PROJECT I

Course Synopsis
This is an individual research project in connection with a special engineering problem and under the guidance of an academic staff. The project undertaken may fall under one of the following areas: mathematical analysis, experimental tests, computer simulation, hardware and/or software development, device fabrication. In this subject. In this subject, the students will be taught on how to prepare the research proposal. Besides that, student will be also exposed to earlier part of thesis writing such as introduction, literature review and methodology.

Course Outcomes

CO1:
Ability to modulate and utilize academic knowledge and practical experience in conducting an academic project.

CO2:
Ability to think objectively, analytically and critically in identifying and solving problems in a systematic manner;

CO3:
Ability to work independently in conducting and completing an academic project.

CO4:
Ability to present the final product orally and graphically.

EAT 446/4
FINAL YEAR PROJECT II

Course Synopsis
This subject is the continuity of Final Year Project I. In this subjects students will conduct experimental tasks which has been planned during the Final Year Project I. Students also will completing their thesis report during this subject. In this subject, students will be also exposed to journal writing.

Course Outcomes

CO2:
To provide knowledge on database management and technique to evaluate and collate raw data

CO3:
Able to transform environmental data into decision making information by using statistical analysis and simulation modelling tools

CO4:
To raise awareness of the students to the existing environmental risk problems

CO5:
Expose and equip students to the latest waste treatment research technology for application in their career in the future

References
3. Lorenz M. Hilty, Environmental informatics, Elsevier, 2006
5. A. J. Jakeman, Alexey Voinov, Andrea Emilio Rizzoli, Environmental modelling, software and decision support: state of the art and new perspectives, Elsevier,

EAT 447/3
ENVIRONMENTAL INFORMATICS

Course Synopsis
Overview of environmental informatics, environmental data and information management, environmental risk, environmental quality standard, modeling environmental process

Labs:
1. Modelling software for air and water pollutants transport-dispersion.
2. Disper 3 for air dispersion problems
3. Hydraulic analysis using MODFLOW
4. Environmental data optimization
5. EIA data simulation.

Course Outcomes

CO1:
To provide knowledge and understanding of concerns of environmental pollutants and monitoring systems
EAT 448/3
REMOTE SENSING

Course Outcomes

CO1:
Ability to define and describe the concept, component and application of remote sensing.

CO2:
Ability to identify and utilizes the tools required in visual image interpretation.

CO3:
Ability to analyse environmental data by using digital image processing.

CO4:
Ability to define and describe the concept, component and application of microwave and lidar sensing

References
5. James B. Campbell, Introduction to remote sensing, Taylor & Francis, 2002

Course Synopsis
Concept and foundations of remote sensing; Introduction to electromagnetic energy; Introduction to visual image interpretation; Multispectral, thermal and hyperspectral sensing; satellite and sensors; digital image processing; Microwave and lidar sensing.

Labs:
1. Interactive Display Function - ENVI
2. Classification Method - ENVI
3. Decision Tree Classification - ENVI
4. Data Fusion – ENVI

EAT 449/3
ENVIRONMENTAL PROCESS CONTROL AND INSTRUMENTATION

Course Outcomes

CO1:
Ability to have a general understanding on process control strategies for Environmental Engineering application.

CO2:
Ability to identify suitable instruments for various processes.

CO3:
Ability to develop and solve dynamics model of chemical processes related to Environmental Engineering.

CO4:
Ability to identify and apply the various control strategies of typical chemical and bioprocess equipment related to Environmental Engineering.

References

Course Synopsis
Introduction to Process Control, Control loop hardware and Instrumentation, Process Dynamics, Dynamics behavior of ideal system, PID Control System, Application of Control System in Environmental Engineering.

Labs:
1. Basic Flow Control
2. PH value process control
3. Introduction to Matlab and Simulink
4. Open loop versus Close loop Simulation
5. Activated sludge process control simulation
6. Coagulation/flocculation process control simulation

EAT 448/3
REMOTE SENSING

Course Outcomes

CO1:
Ability to define and describe the concept, component and application of remote sensing.

CO2:
Ability to identify and utilizes the tools required in visual image interpretation.

CO3:
Ability to analyse environmental data by using digital image processing.

CO4:
Ability to define and describe the concept, component and application of microwave and Lidar sensing

References
5. James B. Campbell, Introduction to remote sensing, Taylor & Francis, 2002

Course Synopsis
Concept and foundations of remote sensing; Introduction to electromagnetic energy; Introduction to visual image interpretation; Multispectral, thermal and hyperspectral sensing; satellite and sensors; digital image processing; Microwave and lidar sensing.

Labs:
1. Interactive Display Function - ENVI
2. Classification Method - ENVI
3. Decision Tree Classification - ENVI
4. Data Fusion – ENVI

EAT 449/3
ENVIRONMENTAL PROCESS CONTROL AND INSTRUMENTATION

Course Outcomes

CO1:
Ability to have a general understanding on process control strategies for Environmental Engineering application.

CO2:
Ability to identify suitable instruments for various processes.

CO3:
Ability to develop and solve dynamics model of chemical processes related to Environmental Engineering.

CO4:
Ability to identify and apply the various control strategies of typical chemical and bioprocess equipment related to Environmental Engineering.

References

Course Synopsis
Introduction to Process Control, Control loop hardware and Instrumentation, Process Dynamics, Dynamics behavior of ideal system, PID Control System, Application of Control System in Environmental Engineering.

Labs:
1. Basic Flow Control
2. PH value process control
3. Introduction to Matlab and Simulink
4. Open loop versus Close loop Simulation
5. Activated sludge process control simulation
6. Coagulation/flocculation process control simulation
EAT 455/3
INDUSTRIALIZED BUILDING SYSTEM (IBS)

Course Synopsis

This course is designed to expose students to the concepts of IBS which includes the advantages and disadvantages using IBS in Construction, Roadmap of IBS and the usage of IBS. It also highlighted the concept of Score Calculation and submission, Principal of Modular Coordination in IBS and concepts of buildibility. Enhancement through mini project will be done to further strengthen their knowledge on subject matter.

Course Outcomes

CO1: Ability to discuss the concept of IBS modern construction technology.

CO2: Ability to explain the Principle of Score calculation and its submissions.

CO3: Ability to discuss Concept of Modular Coordination in IBS.

CO4: Ability to discuss precast concrete building design.

References

EAT 453/3
ADVANCED STRUCTURAL ANALYSIS

Course Synopsis

 Stability: energy methods for single degree-of-freedom elastic systems; critical and nonlinear buckling; classification of types of basic post-buckling responses; imperfection-sensitivity. Instabilities in struts and columns: idealised and real behaviour; Rayleigh and Timoshenko methods. Instabilities in beams: lateral-torsional buckling. Introduction to plate buckling. Plasticity: moment capacity of composite sections; moment capacity reduction due to shear and axial force, plastic collapse of beams and frames.

Course Outcomes

CO1: Ability to discuss stability of structure including single degree-of-freedom elastic systems; critical and nonlinear buckling; classification of types of basic post-buckling responses.

CO2: Ability to describe plasticity consisting moment capacity of composite sections; moment capacity reduction due to shear and axial force, plastic collapse of beams and frames.

CO3: Ability to discuss dynamic loads, structural modeling and degrees of freedom.

CO4: Ability to describe forced vibrations of structures.

References

EAT 454/3
TIMBER AND MASONRY DESIGN

Course Synopsis

This course provides student knowledge in engineering material (timber and masonry). Emphasis of this course is to introduce students to timber and masonry as structural member. Students will be able to design timber joint using nail and other mechanical fasteners, design unreinforced and reinforced masonry structural elements and structures, and will be able to analyze serviceability and ultimate capacity design; seismic response; resistance and design.

Course Outcomes

CO1:
Ability to design wood columns and bending members.

CO2:
Ability to design timber joint using nail and other mechanical fasteners.

CO3:
Ability to design unreinforced and reinforced masonry structural elements and structures.

CO4:
Ability to analyze serviceability and ultimate capacity design; seismic response; resistance and design.

References

EAT 456/3
FOUNDATION ENGINEERING

Course Synopsis

This course exposes students to the application of soil mechanics principles to foundation design. Topics include discussion on various types of foundations and their criteria for selection such as shallow foundation, pile, raft foundation, group piles, and laterally loaded and uplift piles. Settlement and bearing capacity considerations are employed to select and design the appropriate foundation scheme for structures. Construction of foundation, which includes excavation, shoring and bracing, and protection measures for foundation due to chemical attack, corrosion and seepage are also included.

Course Outcomes

CO1:
Ability to discuss various types of shallow and deep foundation.

CO2:
Ability to design shallow foundation.

References

Career Prospect For Environmental Engineering Programme and Building Engineering Programme

A wide range of career prospect is available for B.Eng (Hons) Environmental Engineering graduates and Bachelor of Building Engineering graduates. The sectors that offer job opportunities related to both engineering programme are as follows:

- Commodity base industries
- Petrochemical industries
- Chemical industries
- Hazardous waste, solid waste, waste water & water treatment industries
- Institution of higher learning, research institutes and education
- Institution of environmental consultancy
- Government departments such as Department of Environment, Department of Drainage & Irrigation, Department of Occupational Health & Safety, Department of Works, Department of Health, etc
- Enacted government bodies such as MARDI, PORIM, SEDC, NIOSH, etc
- Research and development (R&D) and academic institutions
- Local government & local authorities
- Enacted government bodies such as CIDB, NIOSH, etc
- Non governmental organization (NGO) both national and international

The main job opportunities are as follows:

- Environmental Engineer/Officer
- Environmental Quality Control Engineer/Officer
- Occupational, Environmental, Health & Safety Engineer/Officer
- Environmental Enforcement Officer
- Risk Assess Engineer/Executive
- Process Engineer
- Consultant Engineer/Executive
- Site/Resident Engineer
- Public Health Engineer
- Site Remediation Engineer
- Landfill Engineer
- Water Supply/Resources Engineer
- Pollution Control Engineer
- Sustainable Development Executive
- Environmental Technical Contractors
- Sales Engineer/Executive
- Environmental Entrepreneur
- Academician
- Building engineers
- Construction manager
- Consultant engineer/executive
- Facility engineer
- Project manager/executive
- Structural engineer
- Operation manager
- Design engineer
- Site Engineer
- Resident Engineer
- Construction Contractor
Programmes Offered:

- Bachelor of Business (Honours) (Engineering Entrepreneurship)
- Bachelor of Business (Honours) (International Business)

SCHOOL OF BUSINESS INNOVATION AND TECHNOPRENEURSHIP (PPIPT)
Universiti Malaysia Perlis (UniMAP),
Jalan Kangar – Alor Setar,
01000 Kangar, Perlis.

Tel : 04 – 979 7707
Fax : 04 – 979 7708
Introduction

The School of Business Innovation & Technopreneurship (PPIPT) was approved for inception on June 4, 2010. PPIPT was established to serve as a catalyst in disseminating knowledge in management and business not only to all departments at UniMAP, in particular, the engineering schools but also the society at large.

The school offers two business programmes:

1. Bachelor of Business (Honours) (Engineering Entrepreneurship)
2. Bachelor of Business (Honours) (International Business).

The main aim of the Bachelor of Business (Honours) (Engineering Entrepreneurship) programme is to prepare business students majoring in entrepreneurship as well as basic skills in engineering to become entrepreneurs. This programme is designed for students interested in entrepreneurship who wish to develop knowledge and basic skills of engineering associated with the production and marketing of technology-based products. This program will be able to produce graduates with balanced knowledge and skills in entrepreneurial and technical aspects. Student will be moulded and guided in learning the basic subjects of engineering and entrepreneurship, nurtured to be self-reliant and have high competitiveness to face the challenges in the current globalized environment.

The main aim of the Bachelor of Business (Honours) (International Business) programme is to produce graduates who are knowledgeable and capable of business transactions in the international perspective, as Malaysia is now increasingly active in international trade. Graduates from this program are trained to have the ability to incorporate and apply the knowledge and skills in business. Students will also be groomed to be self-reliant and able to find solutions to a variety of problems through innovative and creative thinking. Students will also be instilled with noble and ethical values.
School of Business Innovation & Technopreneurship

LECTURERS

Prof. Dato' Wira Dr. Mohd Salleh bin Hj Din
Ph.D SME (University of Durham)
MBA Finance and Marketing (Miami University)
Tel : 04 – 979 8400
E-mail : sallehdin@unimap.edu.my

Prof. Dr. Abdul Majid bin Md Isa
Ph.D (Ed. Psych) Hull, England
M.A. (Ed. Psych./Statistics) Iowa, USA
B.Ed. (Agric. Sc.) UPM
Tel : 04 - 9797707
E-mail : abdmajid@unimap.edu.my

Prof. Dr. Rosni binti Bakar
Ph.D Economic, University of Exeter, England, MA (Economic) Eastern Illinois University, USA
Tel : 04 – 979 7707
E-mail : rosni@unimap.edu.my

Associate Professor Dr. Hazry bin Desa
PhD (Control Communication), Oita University, Japan
B. Eng (Mechanical Engineering), Tokushima University, Japan
Tel : 04 – 976 7707
E-mail : hazry@unimap.edu.my

Associate Professor Ku Halim bin Ku Ariffin
M.PA (USM – Syracuse), B.A (USM)
Tel : 04 – 979 7707
E-mail : ku.halim@unimap.edu.my

Associate Professor Dr. Yoshifumi Harada
D.BA (Kanagawa University, Jepun)
M.Sc. (Economics) Murray State University, USA
MBA (Hampton University, USA)
B.S. (Law) Kobegakuin University, Japan
Tel : 04 – 979 7707
E-mail : yoshifumi@unimap.edu.my

Associate Professor Mohd. Murray Hunter
Master of Organisation Behaviour (Swinburne)
BSc (TingkahakuOrganisasi) (Swinburne)
Diploma of Perfumery (Plymouth)
Tel : 04-979 7707
E-mail : murray@unimap.edu.my

Associate Professor Lt. Kol. (B) Azuddin bin Hj. Bahari
MBA (Leicester)
Tel : 04 – 979 7707
E-mail : azuddin@unimap.edu.my

Dr. Md Aminul Islam
Ph.D in Finance (Capital Market Based Research), USM, Master of Business (USM)
Advance Diploma In Teaching In Higher Education, NTU, UK
Bachelor of Business Administration (UIA)
Tel : 04 – 979 7707
E-mail : amin@unimap.edu.my

Tuan Hj Rusli bin Abd Hamid
MBA, UKM, DPA, INTAN
Tel : 04-979 7731
E-Mail : rusli@unimap.edu.my

Mr Adi Anuar bin Azmin
M.Edu(UTM Skudai), BBA (Hons)
Dip Banking (UITM Shah Alam)
Tel : 04-979 7707
E-mail : adianuar@unimap.edu.my

Mr Ahmad Zulhusny bin Rozali
M. Sc. (IT-Entrepreneurship), UTM
B. Sc. (Computer Science), UTM
Tel : 04-979 7702
E-mail : zulhusny@unimap.edu.my

Mrs. Atikah Nor binti Johari
Master of Business Administration, UUM
BBA (Hons) Finance, UUM
Tel : 04 – 979 7733
E-mail : atikahnor@unimap.edu.my

Miss Azlini binti Hassan
Master Business Administration (UUM)
Bachelor Business Administration (Hons.) (HRM) UUM
Tel : 04 – 979 7717
E-mail : azlini@unimap.edu.my

Mrs. Azlita binti Abdul Jalil
MSc. Extension Education (Traning Mgt)
UPM, BBA (Hons) (HRM) UUM
Tel : 04 – 979 7706
E-mail : azlita@unimap.edu.my

Mrs. Dayang Hasliza binti Muhd Yusuf
MSc. Finance (UIAM), BBA (UIAM)
Tel : 04-979 7707
E-mail : dayanghasliza@unimap.edu.my

Mr Hirwan Jasbir bin Jaafar
M.Sc. HRD UPM, LLB.(HONS) UKM
Tel : 04-979 8565
E-mail : hirwan@unimap.edu.my

Mrs. Husna Afifi binti Mohd Yusoff@Mat Jusoh
MSc. Information Management (UiTM)
BPM (Hons) UUM
Tel : 04 – 979 8892
E-mail : husnaafifi@unimap.edu.my

Mrs. Julinawati binti Suanda
MBA UUM, BPM (Hons) UUM
Tel : 04-979 7714
E-mail : julina@unimap.edu.my

Mr Ku Amir binti Ku Daud
Master in Business Administration, UUM
Bachelor in Business Admin (Marketing) UIITM
Tel : 04 – 979 1062
E-mail : kuamir@unimap.edu.my

Mr Muhammad Faisal bin Hamidi@Abd Rani
Msc. Management UUM
Bachelor in International Business (Hons) UUM
Diploma in International Trade (KUSZA)
Tel : 04 – 979 7707
E-mail : faisalhamidi@unimap.edu.my

Mrs. Norshahrizan binti Nordin
MSc (Technology Management)
B. Tech. Mgmt (Mfg & IT), UUM
Dip. In Mfg. Tech, KUSZA
Tel : 04 – 979 7707
E-mail : norshahrizannordin@unimap.edu.my

Miss Nursyuhadah binti Kamaruddin
Master in Business Administration (MBA)
UUM
B. Business Administration (Operation Management) UUM
Diploma in Business Studies (DBS) ITM
Tel: 04-979 7719
E-mail : syuhadah@unimap.edu.my

Mr. Raziff bin Jamaluddin
MBA (UITM), BBA (Hons) International Business (UITM)
Tel : 04 – 979 7707
E-mail : raziff@unimap.edu.my

Mrs. Siti Nor Junita binti Mohd Radzi
MSc. (International Accounting)
Bachelor in Accounting, UiTM
Diploma in Accounting, UiTM
Tel: 04-979 7737
E-mail : sitijunita@unimap.edu.my

Mrs. Suraiya binti Ibrahim
MBA (Accounting)
Bachelor in Accounting, UiTM
Diploma in Accounting, UiTM
Tel: 04-979 7707
E-mail : suraiya@unimap.edu.my

Mrs. Suriani binti Sukri
MBA, UUM
Bac. Of Business Administration (BBA) (Finance), UUM
Tel : 04 – 979 7723
E-mail : surianisukri@unimap.edu.my

Mrs. Tengku Suriani binti Tengku Yaakub
MBA, University of Central Missouri
BSc. In Business Administration & Computer Science, Indiana State University
Tel : 04 – 979 7705
E-mail : tengkusuriani@unimap.edu.my

Mrs. Wan Sallha binti Yusoff
MBA (Accounting) UUM
BACC (Hons) UUM
Tel : 04 – 979 7707
E-mail : wansallha@unimap.edu.my

Lt Kol Zainudin bin Mustafa
Master in Management, UM
Dip. Strategic Studies, UM
PSC, MaktabTsurusAngkatanTentera
Tel : 04 – 979 7707
E-mail : zainudinmustafa@unimap.edu.my

Mr. Mohammad Shariff bin Ismail
Master in Business Administration, UUM
BA (Hons) Accounting and Finance, Southbank University London
Diploma in Education, Kuala Lumpur Technical Teaching College
Diploma in International Baccalaureate, MARA College Banting
Tel : 979 7715
E-mail : shariff@unimap.edu.my

Miss Hafizah binti Abdul Rahim
Master in Economics, International Islamic University Malaysia
BA, Shariah and Economics (Hons), University Malaya
Tel : 04 – 979 7713
E-mail : hafizahrahim@unimap.edu.my

Mrs. Mohd Fitri bin Mansor
MSc. Management, UUM
BBA (Hons) Business Admin. (HRM), UK
Tel : 04-979 7707
E-mail : fitrimansor@unimap.edu.my

Mr. Mohd Shahidan bin Shaari
Master in Economics, UUM
Tel : 04 – 979 7716
E-mail : shahidanshaari@unimap.edu.my

Mrs. Siti Norwahida binti Shukeri
Master Sains In Accounting
BBA Accounting
Tel : 04 - 9798892
E-mail : diananabila@unimap.edu.my

Miss Syahira binti Saaban
Master Human Resources Management, UUM, BBA (Human Resources Management)
Tel : 04 – 979 7707
E-mail : syahirasaaban@unimap.edu.my

Miss Thohirah binti Shahidan
Master Human Resources Management, UUM
Tel : 04 – 979 7707
E-mail : thohirah@unimap.edu.my

STUDY LEAVE

Mr. Muhammad Shahar bin Jusoh
M. Sc.Info. Mgt.(UITM)
BBA (Hons), (UUM)
E-mail : shahar@unimap.edu.my

Mr. Kamal Baharin bin Baharuddin
MBA (UUM) BBA (Hons), (UUM),
E-mail : kamal@unimap.edu.my
Mr. Mohd Zukime bin Mat Junoh
M.Sc.(I.T),(UUM)
B.Ec.Hons.(UUM)
E-mail : zukime@unimap.edu.my

Miss Evawaynie Valquis binti Md. Isa
Master Of Business Administration (UiTM)
BBA (Hons.) Finance (UiTM)
Diploma In Investment Analysis (UiTM)
E-mail : evawaynie@unimap.edu.my

Mrs. Tunku Salha binti Tunku Ahmad
Master of Economics , UUM
Bachelor of Economics, UUM
Diploma Pendidikan, Maktab Perguruan Persekutuan P. Pinang
E-mail: salha@unimap.edu.my

Mr. Shubri binti Salleh
Office Assistant
Tel : 04-979 7707
Email : shubri@unimap.edu.my

Mrs. Ruhaida binti Ismail
Assistant Registrar
Tel : 04 : 979 7704
E-mail : ruhaida@unimap.edu.my

Miss Fatin Syazwani Syamini binti Abd Majid
Secretary
Tel : 04-979 7707
Email : shereen@unimap.edu.my

Mr. Mordani bin Morni
Admin Assistant (P/O)
Tel : 04-979 7710
Email : mordani@unimap.edu.my

Mr. Mohd Alif bin Zakaria
Admin Assistant (P/O)
Tel : 04-979 7710
Email : alifzakaria@unimap.edu.my

Miss Siti Azura binti Abdullah
Admin Assistant (P/O)
Tel : 04-979 7711
Email : sitiazura@unimap.edu.my
PROGRAMME EDUCATIONAL OBJECTIVE’ (PEO) DAN ‘PROGRAMME OBJECTIVES’ (PO)
BACHELOR OF BUSINESS (INTERNATIONAL BUSINESS)

PROGRAM EDUCATIONAL OBJECTIVE (PEO):

Programme Objectives 1
Graduates who are entrepreneurs.

Programme Objectives 2
Graduates who are entrepreneurial leaders in the chosen field as demonstrated through career advancement.

Programme Objectives 3
Graduates who pursue continuous educational opportunities.

Programme Objectives 4
Graduates who contribute to society.

Programme Objectives 5
Graduates who contribute through research and development.

PROGRAM OUTCOMES-PO

PO 1 Ability to apply knowledge of entrepreneurship, business management and basic engineering.
PO 2 Ability to identify problems, create solutions and innovate to improve decision making and problem solving.
PO 3 Ability to apply business operation practices and principles used in the current business environment.
PO 4 Ability to communicate effectively.
PO 5 Ability to demonstrate an in-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development.
PO 6 Ability to understand professional and ethical responsibilities.
PO 7 Ability to operate with multi-disciplinary teams.
PO 8 Ability to recognize the need for, and engage in life-long learning.
PO 9 Ability to understand social, cultural and environmental responsibilities of an entrepreneur/manager.
PO 10 Ability to recognize potential utilities of engineering applications as business opportunities.
CURRICULUM STRUCTURE FOR
BACHELOR OF BUSINESS (INTERNATIONAL BUSINESS)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
<td>First</td>
</tr>
<tr>
<td>Semester</td>
<td>May – July</td>
<td>May – July</td>
<td>May – July</td>
</tr>
<tr>
<td></td>
<td>BIT290/3 INDUSTRIAL ATTACHMENT 1</td>
<td>BIT290/3 INDUSTRIAL ATTACHMENT 2</td>
<td></td>
</tr>
<tr>
<td>BUSINESS CORE / ELECTIVE COURSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BFT105/3 Introduction to Business</td>
<td>BFT108/3 Principle of Marketing</td>
<td>BFT337/3 International Strategic Marketing</td>
</tr>
<tr>
<td></td>
<td>BFT106/3 Principle of Accounting</td>
<td>BFT103/3 Business Law & Ethics</td>
<td>BFT338/3 International Strategic Management</td>
</tr>
<tr>
<td></td>
<td>BFT101/3 Business Economics</td>
<td>BFT104/3 E-Business</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BFT109/3 Principle of Management</td>
<td>BQT173/3 Business Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BQT133/3 Business Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY REQUIRED COURSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUT235/2 Ethnic Relations</td>
<td>EUT122/2 Skills and Technology in Communication</td>
<td>BFTxxx/3 (Elective)</td>
</tr>
<tr>
<td></td>
<td>EUW410/2 Malay Language</td>
<td>EUW212/2 English Language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW1xx/1 Co-Curricular Activity</td>
<td>EUT123/3 Business Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUW233/2 Asian And Islamic Civilization</td>
<td>EUW224/2 Engineering Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122 units</td>
<td>19</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

Kursus Elektif:
Pelajar perlu mengambil kursus ELEKTIF seperti yang dicadangkan. Walau bagaimanapun, kursus ELEKTIF adalah bergantung kepada penawaran yang dibuat oleh PPIPT pada semester yang berkenaan.
PROGRAMME EDUCATIONAL OBJECTIVE’ (PEO) DAN ‘PROGRAMME OBJECTIVES’ (PO) BACHELOR OF BUSINESS(ENGINEERING ENTREPRENEURSHIP)

PROGRAM EDUCATIONAL OBJECTIVE (PEO):

Programme Objectives 1
Graduates who are managers

Programme Objectives 2
Graduates who are entrepreneurial leaders in the chosen field as demonstrated through career advancement.

Programme Objectives 3
Graduates who pursue continuous educational opportunities.

Programme Objectives 4
Graduates who contribute to society.

Programme Objectives 5
Graduates who contribute through research and development.

PROGRAM OUTCOMES-PO

PO 1 Ability to apply knowledge of business management in the work environment
PO 2 Ability to identify problems, create solutions and innovate to improve decision making and problem solving
PO 3 Ability to apply business operation practices and principles used in the current business environment
PO 4 Ability to communicate effectively
PO 5 Ability to demonstrate an in-depth understanding of entrepreneurship, the process of innovation and the need for sustainable development
PO 6 Ability to understand professional and ethical responsibility
PO 7 Ability to operate with multi-disciplinary teams
PO 8 Ability to recognize the need for, and engage in life-long learning.
PO 9 Ability to understand the social, cultural and environmental responsibilities from a global perspective
PO 10 Ability to adapt to international business environments.
PO 11 Ability to communicate proficiently in foreign languages
CURRICULUM STRUCTURE FOR
BACHELOR OF BUSINESS (ENGINEERING ENTREPRENEURSHIP)

<table>
<thead>
<tr>
<th>YEAR Semester</th>
<th>FIRST</th>
<th>SECOND</th>
<th>SEMESTER BREAK</th>
<th>THIRSD</th>
<th>BIT291/6 INCUBATION PROGRAMME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Second</td>
<td>April–July (12 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First</td>
<td></td>
<td></td>
<td>First</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Second</td>
<td></td>
</tr>
<tr>
<td>BUSINESS CORE / ELECTIVE COURSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR Semester</td>
<td>FIRST</td>
<td>SECOND</td>
<td>SEMESTER BREAK</td>
<td>THIRSD</td>
<td>BIT291/6 INCUBATION PROGRAMME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second</td>
<td>April–July (12 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First</td>
<td></td>
<td></td>
<td>First</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Second</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY REQUIRED COURSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR Semester</td>
<td>FIRST</td>
<td>SECOND</td>
<td>SEMESTER BREAK</td>
<td>THIRSD</td>
<td>BIT291/6 INCUBATION PROGRAMME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second</td>
<td>April–July (12 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First</td>
<td></td>
<td></td>
<td>First</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Second</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>First</th>
<th>Second</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 units</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

* Pelajar perlu mendaftar awal tiga (3) minggu berbanding kalendar akademik universiti bagi membolehkan pelajar mengikuti program inkubator setelah menamatkan semester ke-4.

Pelajar yang mendapat keputusan MUET Band 1, 2 atau 3 perlu mengambil kursus EUW112 Foundation English pada Tahun Pertama Semester 1.

Kursus Elektif: Pelajar perlu mengambil kursus ELEKTIF berdasarkan jadual penawaran kursus elektif oleh PPIPT.
COURSE SYLLABUS

BFT101/3
BUSINESS ECONOMICS

Course Synopsis

This module applies the tools of economic analysis to issues in business management, developing the student’s ability to problem solving using microeconomic and macroeconomic concepts. The module will focus on the market operation for goods and services using demand and supply analysis, entrepreneurship, the emergence and growth of firms, the costs of production, the different forms of competition and game theory, the macroeconomic environment and government policy.

References

BFT105/3
INTRODUCTION TO BUSINESS

Course Synopsis

This course focuses on an integrated view of business. It aims to provide students with a comprehensive and balanced overview of the interwoven nature of basic business disciplines and principles. Topics to be explored includes: business information and practices, small business management, market dynamic, competitive strategies, business plan writing, business ethics and social responsibility.

References

BFT106/3
BUSINESS ACCOUNTING

Course Synopsis

The functions of accounting within a business are to record, measure and summarize transactions in a form that will help managers in monitoring, planning, control and making decisions. Businesses are also bound by statute to report the results of their accounting externally and in a particular form. This course will cover the recording and measuring of transactions, specifically the double entry system, preparation of financial statements for different types of business organizations, interpretations of financial statements, the valuation of asset and liabilities and the framework for the preparations and presentations of financial statements.

References

BFT107/3
BUSINESS FINANCE

Course Synopsis

This subject provides an introduction to financial decision making rooted in current financial theory and in current state of world economic conditions with emphasis on capital markets and their influences on corporate financial decisions. The goal of this subject is not merely to teach the tools of a discipline or trade but also to enable students to abstract what is learned to new and yet unforeseen problems – in short, to educate students on finance.
References

BFT108/3 PRINCIPLES OF MARKETING

Course Synopsis

This course will be of interest to business program students because marketing is one of the three foundations in any business besides operation management and finance. All businesses, whether small, medium or multinational organization has a marketing component. This course will familiarize student with the important concern of marketing and the importance of how, when, why and where to promote the business.

References

BFT110/3 ORGANIZATIONAL BEHAVIOR

Course Synopsis

This course will discuss the concepts and theories of organisation elements, management theories, individuals and group characteristics, job nature and design, motivation, leadership, conflict and communication at all organisational level. This course intends to provide students in gaining knowledge and understanding on the importance of organisational behaviour in various organizations.

References

BFT111/3
MANAGERIAL ACCOUNTING

Course Synopsis

This course introduces the basic concepts, terminologies, principles and methods of costing, budgetting and managerial decision making at operational level. This includes introduction to managerial accounting, costing behavioral and techniques, budgetting techniques and variance analysis.

References

4. Oliver and Horngren (2010), Managerial Accounting, Prentice Hall

BFT205/3
HUMAN RESOURCE MANAGEMENT

Course Synopsis

This course is divided into 12 topics. It will discuss the concepts and techniques of human resources management (HRM), legal environment in HRM, job analysis and design, staffing, human resource development, performance appraisal, compensation management, occupational safety and health, industrial relations, and employee rights and discipline.

References

BFT221/3
OPERATIONS MANAGEMENT

Course Synopsis

This course will introduce the concepts and techniques for designing, planning and controlling of manufacturing and service operations at international level. This course will provide basic definitions of all operational issues such as operation strategy, design of goods and services, managing quality, process strategy, location strategies, layout strategies, human resources and job design, supply chain management, inventory management and aggregate planning. This course intends to provide managers in gaining knowledge and understanding on the importance of operation management in organisations.

References

BFT224/3
BUSINESS LAW & ETHICS

Course Synopsis

Law governs our daily activities. Similarly with other business transactions, these are certain rules that we have to follow. The purpose of having these laws is so that the transactions the parties have breached the law, action can be taken against the aggrieved party. Business ethics deals with what is right and wrong in organizational decisions, behavior and policies. The ethics provides the principles and guidelines that assist people in making informed choices that balance economic interests and social responsibilities. With the relevancy of the business issues, the students will be able to discuss the various laws that govern the elements of contract, the sale of goods, agency, hire purchase, partnership and the ethics of the business.

References

BFT318/3
RESEARCH METHODOLOGY

Course Synopsis

This course addressed the theoretical concepts of research methods in all area of business. The course introduces students to the fundamental of preparing the research and presenting the written and oral presentation. Its comprises of topics which cover the basic step of research process, data collection methods, research methodologies, data analysis, findings, discussion and report writing.

References

JOB OPPORTUNITIES

BACHELOR OF BUSINESS (HONOURS) (ENGINEERING ENTREPRENEURSHIP)

Engineering Entrepreneurship program graduates have good business potential because they are trained to be entrepreneurs. Off-campus incubator experience will give confidence required by the pre-graduates. To those who look for business opportunities in the engineering field, this program provides technical and entrepreneurial skills. The graduates can also find opportunities of finance, hospitality, investment, public service, marketing and production.

BACHELOR OF BUSINESS (HONOURS) (INTERNATIONAL BUSINESS)

International Business Programme graduates have knowledge and exposure in dealing with International Business, experienced through their industrial practical training whereby they are placed at established companies. This would be relevant to Malaysia’s position which is increasingly recognised in the context of international trade. This programme would also prepare students for careers as the followings:

- Global Management Officer
- International Sales Manager
- International Sales Representative
- International Finance Manager
- Human Resource Manager
- Operations Manager
- Financial Analyst
- Audit Staff
- Sales Manager
- Project Management Specialist
- Investment & Banking Executive
- Human Resource Specialist
- IT Analyst
CENTRE FOR COMMUNICATION TECHNOLOGY AND HUMAN DEVELOPMENT
Universiti Malaysia Perlis (UniMAP),
Kompleks Pusat Pengajian UniMAP (Blok B),
Jalan Kangar – Arau,
02600 Jejawi, Arau, Perlis.

Tel : 04 - 9798384
Fax : 04 – 9798175
Introduction

Centre for Communication Technology and Human Development or Pusat Teknologi Komunikasi dan Pembangunan Insan (PTKPI), formerly known as Centre for Communication Skills and Entrepreneurship (PKKK) is a centre that serves all other Graduates Programs in UniMAP. Instead of offering academic programmes, PTKPI provides multiple courses that channel the knowledge of social and humanities. These Programmes compliment the engineering and business knowledge which is present in all UniMAP academic programmes. The philosophy held by PTKPI is to enhance students' generic and soft skills which include communication, languages, ICT and socio-humanities in facing the dynamic of global challenges.

PTKPI hopes to create graduates who are holistically developed in entrepreneurial skills and technical aspects, are self-reliant, committed to the field they undertake and possess high competitiveness to face the challenges in this present era of globalization.

LECTURERS

Prof. Dr. Asiah Sarji
Ph.D (Penyiaran/ Komunikasi) UKM
MSc (Filem/Penyiaran) Syracuse Universiti, New York State, USA.
Sarjana Muda Sastera Kepuajian (Bahasa dan Kesusasteraan Melayu), UKM
Tel: 04-9775071
Email: asiaisahsarji@unimap.edu.my

Prof. Madya Dr. Syaharom Abdullah
Ph.D (UPSI)
M.Sc.Ed. (NIU)
B.A (English) (NIU) Penilaian Pendidikan
Sijil TESOL (UM) Pengukuran
Sijil Perguruan (MPPP) Pengujian
Tel: 04 - 9798353/8291
E-mail: syaharom@unimap.edu.my

Prof. Madya Mohariff b. Shariff
MA in Linguistics, Indiana University
BSc in Education (English) Indiana University Bloomington Indiana, USA
Dip. Of Teaching of English as a Second Language, Victoria University, New Zealand
Sijil Perguruan- Maktab Perguruan Persekutuan, P. Pinang.
E-mail: mohariff@unimap.edu.my

Prof. Madya Abdul Aziz Mahmuuddin
M.Sc (Corporate Comm), UPM
B.A (Hons), Malaya
Tel: 04 - 9798644
E-mail: abdulaziz@unimap.edu.my

Dr. Mohd Mizan Mohammad Aslam
PhD, New Zealand.
M.A Civilization Studies (UM)
B.A Hons Islamic, Laws
Tel: 04 - 9798260
E-mail: m.mizan@unimap.edu.my

Dr. Amani Ali Elmetwaly Ali Ibrahim
Phd. Syariah dan Kehakiman USIM
MA syariah Cairo .Uni
Diploma Bahasa Arab Azhar Uni
B.A (Hons)Undang-undang Cairo Uni
Email: amaniali@unimap.edu.my

Mr. Razli Ahmad
M.Sc. HRD (UPM)
BSWM (Hons) (UUM),
Tel: 04-9851326
E-mail: razli@unimap.edu.my

Tn. Hj. Nor Azmi Johari
M.Sc. (Management) UUM
B.A. (Bahasa Asing) UPM
Tel: 04 – 9798373
E-mail: azmijohari@unimap.edu.my

Mr. Ahmad Fahmi Mahamood
M.S (Communication Technology) UPM
B. Comm (Corporate Communication) UPM
Tel: 04 - 9797913
E-mail: fahmi@unimap.edu.my

Mr. Maskor Bajuri
M.A Economy (UKM)
B.A Hons Shariah, Economic (UM)
Email: maskor@unimap.edu.my

Mr. Mohammad Izmer Yusof
Sarjana Pengajian Strategi dan Hubungan Antarabangsa, UUM
Sarjana Muda Sains Pemutusan (Minor Sains Politik), UUM
Email: izmer@unimap.edu.my

Mr. Mohammad Rezal Hamzah
MSc. Corporate Communication (UPM)
Bachelor Of Economics
E-mail: rezal@unimap.edu.my

Tn. Syed Zulkarnain Syed Idrus
M.Sc (Computer Engineering). UniMAP
B.Sc. (Information Systems Engineering), UMIST, UK
BTEC National Diploma (IT Applications), North Trafford College, UK
Tel: 04-9797912

Miss Chuthamas Chittithaworn
MBA, UUM
Degree in Humanity and Social Science (Prince of Songkla)
Tel: 04-9798369
E-mail: chuthamas@unimap.edu.my

Mrs. Rozilawati Mahadi
MA (Applied Linguistics)
BA.ELS. (Pengajian B. Inggeris) UKM
Tel: 04 – 9798162/8458
E-mail: rozilawati@unimap.edu.my

Mrs. Sharmini Abdullah
M.A In Linguistics and English Language Studies, USM
B.Ed in ELT (Surrey)
Tel: 04 - 9798176
E-mail: sharmini@unimap.edu.my

Mr. Shuhairimi Abdullah
M. A Islamic Laws, (Malaya)
B.Syariah (Islamic Laws) (Malaya)
Tel: 04 - 9798673
E-mail: shuhairimi@unimap.edu.my

Lt. Abdul Jalil Ramli
Ijazah Sarjana Sastera (USM)
Ijazah Sarjana Muda Sastera (Kepujian) (USM)
Mr. Shafiq Hizwari Md. Hashim
M.Ed English Language Teaching, UUM
B.Hsc English Language and Literature, IIUM
Tel : 04-9798711
E-mail : shafiq@unimap.edu.my

Mrs. Nor’izah Ahmad
MSc. (Corporate Communication) UPM
Bachelor in Mass Communication (Public Relation) ITM
Tel : 04 - 9798159
E-mail : izah@unimap.edu.my

Mrs. Junainor Hassan
MSc. Psychology Counselling, UUM
BSc. Hons Social Science Majoring in Communication Studies, UNIMAS
Diploma in Office Management & Technology
Tel : 04 - 9798910
E-mail : junainor@unimap.edu.my

Mrs. Hasina Momtaz
MSc. (Management) UUM
Bacc of Arts (BA) National University, Bangladesh
E-mail : hasina@unimap.edu.my

Miss Noor Asliza Abdul Rahim
MA Bahasa Melayu USM
Bac. Sastera,(UPM)
Tel : 04 - 9798397
E-mail : asliza@unimap.edu.my

Miss Rongdara Rochanahasadin
E-mail : rongdara@unimap.edu.my
Bachelor of Arts Degree, Major in English MBA, Marketing, MTEIL, Master of Arts in Teaching English as an International Language

Mrs. Aida Sharmila Wati Wahab
E M.Sc (Computer Engineering, UniMAP (2010), B.Sc. (Information Technology), UUM, Kedah (2006)
Email : aidasharmila@unimap.edu.my

Miss Siti Nurul Jannah Fital
Master Bahasa Melayu (UPM)
Bac. Sastera Bahasa & Linguistik Melayu (UPM)
Email : jannah@unimap.edu.my

Miss Suzana Sulaiman
Ijazah Sarjana Sains Pengajian Strategik (UUM)
Ijazah Sarjana Muda Pengurusan Hal Ehwal Antarabangsa (UUM)
Email : suzanasulaiman@unimap.edu.my

Mrs. Siti Norayu Basir
Ijazah Sarjana Muda Pengurusan Hal Ehwal Antarabangsa
Msc. Strategic Studies
Email : norayu@unimap.edu.my

LANGUAGr TEACHERS

Mr. Hassan Hj. Arshad
B.A Bahasa & Terjemahan (Al-Azhar),
Dip. Edu (Al-Azhar)
Tel : 04 - 9851693
E-mail : hassan@unimap.edu.my

Mrs. Suhaidah Said
Bac. Sastera.(UPM)
Tel : 04 - 9798372
E-mail : suhaidah@unimap.edu.my

Mrs. Noor Salwani Hussin
Bac. Syariah & Sains Politik (UM)
Tel : 04 - 9798374
E-mail : noorsalwani@unimap.edu.my

Mr. Ahmad Hifzurrahman Ridzuan
B.Ed TESL (UiTM)
Tel : 04-9798400
E-mail : hifzurrahman@unimap.edu.my

Mr. Wan Norhaizar Harun
B.ed TESL UiTM
Tel : 04-9792861
E-mail : haizar@unimap.edu.my

Miss Aiza Khris C Pagulong
Bac. Of Secondary Education Major in English (Notre Dame of Dadiangas University)
E-mail : aizakhris@unimap.edu.my

Mr. Mohd Azrizal Mohd Salleh
B.Ed TESL (UiTM)
E-mail : azrizalsalleh@unimap.edu.my

Miss Nurul Syazwani Zulkifli
Bac. Sastera Bahasa & Linguistik Melayu (UPM)
Email : nsyazwani@unimap.edu.my

Miss Sharifah Anis Zarith Syed Dziauddin
Bac. in English Literature (UKM)
E-mail : aniszarith@unimap.edu.my

Mrs. Azizah Abdullah
B.A Pengajian Islam Dan Bahasa Arab (Al-Azhar Mesir)
E-mail : azizahabdullah@unimap.edu.my

Mr. Byron E De La Fuente
BSc In Geology (University of Philippines)
E-mail : byron@unimap.edu.my
<table>
<thead>
<tr>
<th>Name</th>
<th>Qualification</th>
<th>University/Affiliation</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss Habiba</td>
<td>Bac. Degree of Law</td>
<td>University of Xinjiang</td>
<td>E-mail: habiba@unimap.edu.my</td>
</tr>
<tr>
<td>Miss Katrina Mae D Avena</td>
<td>Bac. in Creative Writing</td>
<td>University of Philippines</td>
<td>E-mail: katrina@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Sareepa Je-Arwae</td>
<td>BA Major in Arabic language and Literature</td>
<td>International Islamic University</td>
<td></td>
</tr>
<tr>
<td>Mrs. Ina Suryani Ab Rahim</td>
<td>M.Sc Computing</td>
<td>University of Malaya</td>
<td>E-mail: inasuryani@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Rasidah Abdul Wahab</td>
<td>B.Ed TESL (Hons)</td>
<td>University of Malaya</td>
<td>E-mail: rasidah@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Ropidah Ahmad</td>
<td>Technician</td>
<td>University of Malaya</td>
<td>E-mail: ropidah@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Nor Hazliza Ibrahim</td>
<td>Office Secretary</td>
<td>University of Malaya</td>
<td>E-mail: hazliza@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Noor Rastina Johari</td>
<td>Administrative Assistant</td>
<td>University of Malaya</td>
<td>E-mail: nrastina@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Rosman Ramli</td>
<td>Administrative Assistant</td>
<td>University of Malaya</td>
<td>E-mail: rosmam@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Norain Abdullah</td>
<td>Administrative Assistant</td>
<td>University of Malaya</td>
<td>E-mail: norain@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Roseffandi Darus</td>
<td>General Office Assistant</td>
<td>University of Malaya</td>
<td>E-mail: roseffandi@unimap.edu.my</td>
</tr>
</tbody>
</table>

Administrative Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuan Hj. Huzili Hj. Hussin</td>
<td>M.Ed. (Guidance & Counseling) UM.</td>
<td>E-mail: huzili@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Noor Maizatul Akmar Ishak</td>
<td>MSc Information Mgt. (UiTM)</td>
<td>E-mail: maizatul@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Hanif Suhairi Abu Bakar</td>
<td>M.Sc. Info Mgt. (UiTM)</td>
<td>E-mail: hanif@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Norain Abdullah</td>
<td>Administrative Assistant</td>
<td>E-mail: norain@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Roseffandi Darus</td>
<td>General Office Assistant</td>
<td>E-mail: roseffandi@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Ina Suryani Ab Rahim</td>
<td>M.Sc Computing</td>
<td>E-mail: inasuryani@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Rasidah Abdul Wahab</td>
<td>Assistant Registrar</td>
<td>E-mail: rasidah@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Ropidah Ahmad</td>
<td>Technician</td>
<td>E-mail: ropidah@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Nor Hazliza Ibrahim</td>
<td>Office Secretary</td>
<td>E-mail: hazliza@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Norain Abdullah</td>
<td>Administrative Assistant</td>
<td>E-mail: norain@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Rosman Ramli</td>
<td>Administrative Assistant</td>
<td>E-mail: rosmam@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Norain Abdullah</td>
<td>Administrative Assistant</td>
<td>E-mail: norain@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Roseffandi Darus</td>
<td>General Office Assistant</td>
<td>E-mail: roseffandi@unimap.edu.my</td>
</tr>
</tbody>
</table>
COURSE SYLLABUS

EUW212/2
UNIVERSITY ENGLISH

Course Synopsis

This course is designed to help students achieve confidence in extracting, evaluating and synthesizing information with a view to writing good technical documents. The emphasis will be upon writing clear, concise, accurate, conventional, appropriate materials on a worthwhile subject of interest or technical field as specified in the assignment. Students will learn the techniques of analysis of the writing situation, methods of investigation of the problem, the functional organization of the report itself and the writing of the report to the preparation of the final copy. Students are also required to formally present their research report orally at the end of the semester.

References

EUW224/2
ENGINEERING ENTREPRENEURSHIP

Course Synopsis

The objective of this course is to expose students to the basic knowledge of entrepreneurship and basic business management. It consists of the characteristic of entrepreneurship, the model to develop business, development of business proposal, economic analysis, sources of funding and the management of entrepreneurship technology.

References

EUW233/2
ISLAMIC & ASIAN CIVILISATIONS

Course synopsis

This course discusses the basic concepts of knowledge civilization. In addition, students will be exposed to the universal values arising from the clash of Islamic and Asian civilizations. It also aims to create a Malaysian society that respects and understands the system of religious beliefs and customs practiced.

References:

EUW235/2
ETHNIC RELATIONS

Course synopsis

This course focuses on discussion of basic concepts of ethnic relations and emphasis is given to the plural society in Malaysia. This course will guide students to evaluate and discuss issues related to ethnic relations around them (living on campus) and ethnic relations in Malaysia. Hopefully this course will be able to create a Malaysian society by molding complicated relationships between Malaysia and the ASEAN Region.

References

EUW322/2
THINKING SKILLS

Course Synopsis

The aim of this course is to develop and enhance students’ thinking skills in helping them make decision and resolve issues. Generally, there are two main ideas of thinking skills which are mostly acquired. They are creative thinking and critical thinking. The introduction the soft skills of the main idea in thinking skill concepts such as logical thinking, creative thinking, critical thinking; it is hoped that students can acquire creative and innovative ways with better judgement in resolving issues, especially pertaining to career and self-development.

References

EUW410/2
UNIVERSITY MALAY LANGUAGE

Course Synopsis

The aim of this course is to develop an ability to use the language effectively for purposes of practical communication. The course is based on the linked language skills of listening, reading, speaking and writing, and these are built on as students progress through their studies. The syllabus also aims to offer insights into the culture and civilisation of countries where the language is spoken, thus encouraging positive attitudes towards language learning.

References

EUW110/2
BASIC MALAY LANGUAGE
(FOR INTERNATIONAL
STUDENTS ONLY)

Course Synopsis
The objective of the course is to expose students to the four skills of language: listening, speaking, reading and writing. The listening and speaking skills are merged, and focuses are given not only on forms and functions, but also on pronunciation. The reading and writing skills emphasize on accuracy and grammar, structure and semantics (meaning). Topics for essay writing provide opportunity for students to learn analysis processes, syntax and elaboration.

References

EUW112/2
FOUNDATION ENGLISH

Course Synopsis
This one semester course is programmed and designed to remedy students' weaknesses in the use of English and to raise their proficiency level. It covers major aspects of grammar, writing, reading and speaking; and prepares them for the mainstream English Language Course – EUW 212 University English in UniMAP. Graded passages will be used to develop a reading habit and also to expose students to a wide range of English. The course will adopt a learner-centered approach in which students will be actively involved in various situations requiring communication in English. Grammar is an essential component of the course and will be incorporated into the 4 skills and taught in context. Students will also be actively involved in various situations requiring communication in English.

References

EUW115
THAI LANGUAGE 1

Course Synopsis
This course aim to introduce student to the basic structure of the Thai language. Student will be exposed to new vocabulary, simple sentence structures, speeches and texts; Listening to and producing simple dialogues based on everyday activities. Student also will be introduced to the Thai writing system, tone system and tone discrimination, reading vary simple passages and writing simple sentences.

References
EUW 215
THAI LANGUAGE 2

Course Synopsis
As in the first course, this course also emphasizes on listening, speaking, reading and writing. Students will be exposed to vocabulary expansion, speaking using dialogues for different purposes and different contexts. Students will be introduced to simple essential grammar and sentence structures. Students will also be exposed to reading short passages and writing longer sentences to compose short passages.

References

EUW 415
THAI LANGUAGE 3

Course Synopsis
This course will expand and use more complex vocabulary relevant to society, religion, culture and economy; speak and react to radio or TV broadcast, newspaper articles, passage or texts read and learn about language styles used in the media. Learn more essential grammar point to make longer essay, make note and express idea of texts read. Student also will have the idea and understand Thai culture, manner, value and beliefs through the text.

References

EUW113/2
COMMUNICATIVE ARABIC

Course Synopsis
The course provides the students with active training in their ability to understand and use Arabic in various contexts and to read and write texts of a varying nature, in which grammar is practiced. Written and oral proficiency, writing skills and reading comprehension are considered as important as translation from and to Arabic. The course focuses on further developing the students' ability to communicate in moderately difficult and everyday situations.

References
EUW213/2
COMMUNICATIVE ARABIC

Course Synopsis

The course provides the students with active training in their ability to understand and use Arabic in various contexts and to read and write texts of a varying nature, in which grammar is practiced. Written and oral proficiency, writing skills and reading comprehension are considered as important as translation from and to Arabic. The course focuses on further developing the students’ ability to communicate in moderately difficult and everyday situations.

References:

1. H. Ridlo. Masduki (Prof. Dr.), H. Chatibul Umm (Prof. Dr.) H. Moh. Matsna (Dr.), (2000)
الجملة لغطاب العربية, Darul Ulum Press, Edaran oleh Wisma Yakin, Kuala Lumpur.
3. Ishak Mohd. Rejab (Prof. Madya Dr.), (1987), Kursus Bahasa Arab (Bahagian 11), Yayasan Dakwah Islamiah Malaysia (YADIM), Kuala Lumpur.
5. Elias A. Elias & Ed. E. Elias (t.t.), القاموس الاعلاني لغطاب الفصحى, Mesir.
6. Institut Agama Islam Negeri (IAIN), Sharif Hidayatullah, Jakarta, (1977),
بيانات لغطاب العربية, Bulan Bintang, (Penerbit dan Penyebor buku-buku Teks) Jakarta Indonesia.
7. Lingua Phone (2000), Lingua Phone Institut Limited, Carlton Plaza, 111 Upper Richmond Road, London.
8. Sono Cairo Audio, VIDEO CD,
الإذاعة العربية, Cairo Egypt.
10. Universiti Putra Malaysia (t.t.), الدروس لغطاب العربية, Fakulti Bahasa Moden dan Komunikasi.

EUW313/2
COMMUNICATIVE ARABIC

Course Synopsis

The course provides the students with active training in their ability to understand and use Arabic in various contexts and to read and write texts of a varying nature, in which grammar is practiced. Written and oral proficiency, writing skills and reading comprehension are considered as important as translation from and to Arabic. The course focuses on further developing the students’ ability to communicate in moderately difficult and everyday situations. This course covers the eight (8) topics of Arabic grammar, eight (8) topics of essays and eight (8) topics of Balaghah. The course covers through four fundamentals namely listening, speaking, reading and writing.

References:

1. Mahmud Ismail As-sini(Dr.), (1993)
العربية للذين يتعلمون منهج مبتكر للغطاب الناطقين بالعربية, Darul Ma’arif Mamlakah’ Arabiah Saudiah, Arab Saudi.
3. Ishak Mohd. Rejab (Prof. Madya Dr.), (1987), Kursus
EUW413/2
COMMUNICATIVE ARABIC
Course Synopsis

The course provides the students with active training in their ability to understand and use Arabic in various contexts and to read and write texts of a varying nature, in which grammar is practiced. Written and oral proficiency, writing skills and reading comprehension are considered as important as translation from and to Arabic. The course focuses on further developing the students’ ability to communicate in moderately difficult and everyday situations.

This course covers the four fundamentals namely listening, speaking, reading and writing. Other emphasis of the course are to improve vocabulary development and reading techniques, as well as basic techniques of writing focusing on narrative and descriptive essays.

References:
1. Ahmad Hassan Ziyat (……)
 النحو الياضحم في قواعد اللغة العربية , Darul Kutub Misriyyah, Misir.
2. Batras Al-Bustaniy, (1989),
 النحو الياضحم في قواعد اللغة العربية , Darul Nazir, Beirut.
3. Abdul Rahman Al-Barquni (1979),
 Kursus Bahasa Arab (Arabtone).
 سوابح العربية , Darul Kitab, Beirut.
5. syauqi Dhaif (……..),
 الاملارودى رابع الشعر الحديث , Darul Ma’arif, Kaherah, Mesir.
6. Subhi Soleh (1960),
 دراسات فُريد فقه اللغة , Darul ‘Ilmi Malayan, Beirut.
7. Ali Abdul Wahid Wafi (1945)
 فقه اللغة , Darul Nahdhah, Mesir.

EUW114/2
MANDARIN LANGUAGE I
Course Synopsis

Mandarin Language Class EUW114 is the first course in a series of Chinese language courses and is designed for students who have NO previous knowledge in spoken or written Chinese. This course introduces elementary Mandarin Chinese pronunciation, grammar, characters, as well as commutation skills.

This course aims to enable students to communicate effectively in Chinese and to understand contemporary social/cultural differences between the Greater China region and western countries through the study of Chinese language. This course will cover nine lessons of lecture notes, including the introduction on pinyin. Students will learn greetings, numbers, directions, how to introduce oneself and one's family, how to tell dates and time, how to talk about one's hobbies, how to talk about festivals in Malaysia and shopping. Students will also learn how to write and type Chinese characters.

References

EUW214/2
MANDARIN LANGUAGE 2
Course Synopsis

Mandarin Language Class EUW114—Level II is designed for students who have previous knowledge in spoken or written Chinese. Students will gain listening, speaking, reading and writing skills in standard (Mandarin) Chinese, attaining approximately the second level.
Be able to understand some deliberate speech and discussion pertaining to such topics. Be able to handle successfully most communicative tasks and social situations.

This course will cover the six lessons of the textbook. Students will learn Making a Telephone Call, Asking the Way, Daily Life—Eating & drinking, In the Restaurant, Discussing one's Studies, Shopping- Buying things at the free market. Students will also learn about use Chinese dictionary.

References

EUW117/2
JAPANESE LANGUAGE I

Course Synopsis

This course aims to introduce students to the basic structure of the Japanese Language. Students will be exposed to new vocabulary, simple sentence patterns, speeches and texts. In this course, the basic function of Japanese Language such as writing, listening, and reading are emphasized.

References

EUW317
JAPANESE LANGUAGE 3

As in the second course, this course also emphasizes on listening, speaking, reading and writing. Students will be exposed to vocabulary expansion, speaking using dialogues for different purposes and different contexts. Students will be introduced to simple essential grammar and sentence structures. Students will also be exposed to reading short passages and writing longer sentences to compose shot passages. The syllabus ranges from the basic Japanese structures to basic Japanese cultural elements.

Text Book : Modul Bahasa Jepun II. Ku Mohd Nabil. Pusat Kemahiran Komunikasi dan Keusahawanan, Universiti Malaysia Perlis. (monograph) 2010

Reference

1. The Association For Overseas Technical Scholarships, (1998), Minnanno nihonngo 1, Tokyo : 3A CORPORATION
2. The Association For Overseas Technical Scholarships,(1997), Shin nihongo no kiso1 (Asian Edition)
3. Etsuko Hirai Sachiko Miwa, (2000), Minna no nihongo 1 Bunkei Renshuu Tyou, Tokyo : 3A CORPORATION
structures. Students will also be exposed to reading short passages and writing longer sentences and to compose a dialogue. Beginning Chinese characters (kanji) will be introduced.

The syllabus ranges from the basic Japanese structures to basic Japanese cultural elements.

Text Book:
Modul Bahasa Jepun III. Ku Mohd Nabil. Pusat Kemahiran Komunikasi dan Keusahawanan, Universiti Malaysia Perlis. (monograph) 2010

Reference
1. The Association For Overseas Technical Scholarships, (1998), Minnnano nihonngo 1, Tokyo : 3A CORPORATION
3. Etsuko Hirai Sachiko Miwa, (2000), Minna no nihonngo 1 Bunkei Renshuu Tyou, Tokyo : 3A CORPORATION

EUW417 JAPANESE LANGUAGE 4

This is the fourth of a four part program for Japanese Language Course. As in the third course, this course also emphasizes on listening, speaking, reading and writing. Students will be exposed to vocabulary expansion, speaking using dialogues for different purposes and different contexts.

Students will be introduced to the advanced communicative competence. Students will also be exposed to reading, writing longer sentences and passages and to compose a dialogue. Beginning Chinese characters (kanji) will be introduced. The syllabus ranges from the basic Japanese structures to basic Japanese cultural elements.

Text Book:
Modul Bahasa Jepun IV. Ku Mohd Nabil. Pusat Kemahiran Komunikasi dan Keusahawanan, Universiti Malaysia Perlis. (monograph) 2010

Reference
1. The Association For Overseas Technical Scholarships, (1998), Minnnano nihonngo 1, Tokyo : 3A CORPORATION
3. Etsuko Hirai Sachiko Miwa, (2000), Minna no nihonngo 1 Bunkei Renshuu Tyou, Tokyo : 3A CORPORATION

References
2. Leitner, A.,‘German Made Simple: Learn to Speak and Understand German Quickly and Easily’,Made Simple; Revised Edition, 2006,
EUW345/2
OCCUPATIONAL SAFETY AND HEALTH MANAGEMENT

Course Synopsis

This course is an introduction to major concepts and issues in occupational health and safety. Students identify a conceptual framework for working with populations of workers as an industrial hygienist, safety professional, injury epidemiologist, occupational physician, or occupational health nurse. The application of public health principles and decision-making processes will be discussed in relation to the prevention of injury and disease, health promotion and protection of worker populations from environmental hazards. This course relies on the synthesis of knowledge in the behavioral sciences, industrial hygiene, safety, nursing theory, toxicology and epidemiology while applying these within a program development and management framework.

References

2. Akta Kilang Dan Jentera.

CORE COURSES

EUT122/2
SKILLS AND TECHNOLOGY IN COMMUNICATION (FOR ENGINEERING AND BUSINESS STUDENTS)

Course Synopsis

The purpose of this course is to expose students to communication and information technology. This course introduces students to the basic aspects of human. Students are introduced to motivation, knowledge and skills as tools for competent communication. The first part of the course discusses the basic process in effective communication such as perception, verbal and non-verbal communication, listening skills, basic communication models and information acquisition. The second part deals with competency in communication in the contexts of interpersonal communication, communication in organisation, small group communication, internet communication, basic skills for presentation and intercultural communication.

References

EUT123/3
BUSINESS COMMUNICATION (FOR BUSINESS STUDENTS ONLY)

Course synopsis

This course applies the communication tools and analysis to business management issues. It also focuses on developing students’ ability in problem solving, by using negotiation concepts and communication elements in business environment. The module emphasizes on the patterns and principles of business communication, multicultural and global communication management, communication technology and its trends in business settings, organizational and managerial communication as well as preparation in the formal writing and oral presentation.
EUT440/3
ENGINEERS IN SOCIETY
(FOR ENGINEERING STUDENTS ONLY)

Course synopsis
This course aims to explain the main concept in engineering ethics, risk management and occupational safety and health as well as to expose the student to the basics of law in the engineering context. The materials will be of introductory nature to enable engineers to appreciate factors that has to be taken into consideration in decision-making. At the end of the course, students will be able to identify and discuss issues and challenges faced by engineers relating to engineering ethics, risk management and to understand the legal requirement related to engineering field.

References

EUT443/2
ENGINEERING MANAGEMENT
(FOR ENGINEERING STUDENTS ONLY)

Course Synopsis
This course aims to teach students on how to apply project management skills, economic techniques in evaluating the design and engineering alternatives. The role of engineering economics is to assess the appropriateness of a given project, estimate its value and justify it from an engineering standpoint. At the end of the course, student will be able to identify and discuss issues and challenges faced by engineers relating to project management in the current economic scenarios.

References
ENGINEERING CENTRE
University Malaysia Perlis (UniMAP),
Kuala Perlis Industrial Zone,
02000 Kuala Perlis, Perlis.
MALAYSIA.

Tel : 04-9851114/1284
Fax : 04-9851118
Introduction

The Engineering Centre is located within the Kuala Perlis Industrial Complex. It was established to manage laboratories and workshops which are vitally needed for various engineering programs offered by UniMAP. The teaching learning approach practiced in UniMAP is essentially based on practical-oriented; hence the use of labs cannot be overemphasized.

Objectives

Besides managing laboratories and workshop, the Engineering Centre also supports research and development activities in UniMAP. It also aspires to be a centre for designing and creating innovative engineering products. The Engineering Centre offers facilities for courses which require training and technical skills, parallel to industry standard. It also offers ‘teaching factory’ that is based on industries advanced technology, facilities and conducive environment for research and development activities and training for students and members of staff.
DEAN
PM. ABDUL RAHMAN MOHD SAAD
E-mail: abd.rahman@unimap.edu.my

DEPUTY DEAN
MR. MOHAMAD EZRAL BAHARUDIN
E-mail: m.ezral@unimap.edu.my

CHAIRMAN OF PROGRAMME
MR. SHARULNIZAM MOHD MUKHTAR
E-mail: sharul@unimap.edu.my

ASSISTANT REGISTRAR
MRS. ALMA AZIZAH ABDUL RAHIM
E-mail: alma@unimap.edu.my
LECTURERS

Prof. Madya Abdul Rahman B. Mohd Saad
M.Sc. Electronic (USM), B. Eng (USM)
Tel: 04-9851119
E-mail: abd.rahman@unimap.edu.my

Mr. Mohamad Ezral B. Baharudin
M.Sc. Mechanical Engineering-Manufacturing Systems and Automation (USM)
B. Eng. Mechanical Engineering (USM)
Tel : 04-9851115
E-mail: m.ezral@unimap.edu.my

Mr. Sabri b. Zakaria
Vocational training Officer
B.eng. electric & electronic (Akita university)
tel: 04-9852553
E-mail: sabri@unimap.edu.my

Mr. Zainul Abidin B. Ramli
Dip. In machine tools & Dip. In teaching (ferris state College)
tel: 04-9851552
E-mail: zainul@unimap.edu.my

Mr. Halim B. Harun
Cert. of Electronic Communication (Politeknik Ungku Omar)
tel: 04-9852550
E-mail: halim@unimap.edu.my

Mr. Rosiswardi B. Rusli
Cert. Of mech. eng (POlIMAs)
tel: 04-9855054
E-mail: rosis@unimap.edu.my

Mr. Sharulnizam B. Mohd Mukhtar
B.Eng. Electric & Electronic (UPM)
Tel: 04-9852861
E-mail: sharul@unimap.edu.my

Mr. Mahamad Akmal B. Hj. Saad
B.Sc. Mech. Eng (Hanyang University, Seoul Korea)
Tel: 04-9853103
E-mail: mahakmal@unimap.edu.my

Mr. Khairulnizam B. Sultan Ali
B. in Electrical Engineering (Mechatronic), Kuiitho
Tel: 04-9851208
E-mail: khairulnizam@unimap.edu.my

Mr. Mohd. Nazri B. Abu Bakar
B. Eng Mekatronik (Univ. Fachhochschule Aolen, German)
Tel: 04-9852861
E-mail: nazribakar@unimap.edu.my

Mr. Mr. Mohd Wafiyuddin B. Yahya
B. Eng (Hons) Electrical System Engineering (UniMAP)
Tel: 04-9851208
E-mail: wafiyuddin@unimap.edu.my

Miss. Noor Shazliza Bt. Zakaria
B. Eng (Hons) Computer Engineering (UniMAP)
Tel : 04-9852945
E-mail: shazliza@unimap.edu.my

Mr. Nurulazmi B. Abdul Rahman
B. Eng (Electrical), UTM
Tel: 04-9852784
E-mail: nurulazmi@unimap.edu.my

Mrs. Rokiah Bt. Abdullah
B. in Electric Engineering (Computer Technology), KUITTHO
Tel: 04-9852922
E-mail: rokiah@unimap.edu.my

Mr. Shafie B. Omar
B.Eng.Mech (UiTM)
Tel: 04-9852152
E-mail: shafieomar@unimap.edu.my

Mr. Shahrul Fazly B. Sulaiman
B. Eng (Hons) Electrical Electronic, Metropolitan University UK
Tel: 04-9852152
E-mail: shahrulfazly@unimap.edu.my

Mr. Wan Mohd Faizal B. Wan Nik
B. Eng Electrical (Instrumentation), UiTM
Tel: 04-9852861
E-mail: mohdfaizal@unimap.edu.my

Mr. Zulkapli B. Abdullah
B.Eng(Hons) Computer and Communication Engineering (USM)
Tel : 04-9851302
E-mail : zulkapli@unimap.edu.my

Mr. Mahzan B. Musa
B.Eng.(Hons) Computer Engineering (UniMAP)
Tel : 04-9851208
Email: mahzan@unimap.edu.my

Miss Farah Nazlia Bt. Che Kassim
B.Eng.(Hons) Computer Engineering (UniMAP)
Tel : 04-9852771
Email: nazlia@unimap.edu.my

UNPAID LEAVE

Mr. Sabri b. Zakaria
Vocational Training Officer
B.Eng. Electric & Electronic (Akita University)
Tel: 04-9852553
E-mail: sabri@unimap.edu.my

Mr. Zainul Abidin B. Ramli
Dip. In Machine Tools & Dip. In Teaching (Ferris State College)
Tel: 04-9851552
E-mail: zainul@unimap.edu.my

Mr. Halim B. Harun
Cert. of Electronic Communication (Politeknik Ungku Omar)
Tel: 04-9852550
E-mail: halim@unimap.edu.my

Mr. Rosiswardi B. Rusli
Cert. Of mech. eng (POlIMAs)
Tel: 04-9855054
E-mail: rosis@unimap.edu.my

Mr. Sharulnizam B. Mohd Mukhtar
B.Eng. Electric & Electronic (UPM)
Tel: 04-9852861
E-mail: sharul@unimap.edu.my

Mr. Mahamad Akmal B. Hj. Saad
B.Sc. Mech. Eng (Hanyang University, Seoul Korea)
Tel: 04-9853103
E-mail: mahakmal@unimap.edu.my

Mr. Khairulnizam B. Sultan Ali
B. in Electrical Engineering (Mechatronic), Kuitho
Tel: 04-9851208
E-mail: khairulnizam@unimap.edu.my

Mr. Mohd. Nazri B. Abu Bakar
B. Eng Mekatronik (Univ. Fachhochschule Aolen, German)
Tel: 04-9852861
E-mail: nazribakar@unimap.edu.my
Mr. Mohd Irwan B. Ibrahim
Cert. Of Electric (Power), (POLIMAS)
Tel: 04-9852557
E-mail: irwan@unimap.edu.my

Mr. Mohd Yusri B. Yahya
Cert. Of Mech. Eng (POLIMAS)
Tel: 04-9852558
E-mail: mohdyusri@unimap.edu.my

Mr. Shahreeza B. Zainal Abidin
Cert. Of Electric (Power), (POLIMAS)
Tel: 04-9852558
E-mail: shahreeza@unimap.edu.my

Mr. Mohd Zulmajdi B. Che Din
Cert. Of Electronic Comm. (POLIMAS)
Tel: 04-9853225
E-mail: zulmajdi@unimap.edu.my

Mr. Roshidi B. Ali
Cert. Of Mech. Eng (POLIMAS)
Tel: 04-9852551
E-mail: shidi@unimap.edu.my

Mr. Muhammad Fathehi B. Ahmad Fuad
Cert. Of Mech. Eng (PSA)
Tel: 04-9855054
E-mail: fathehi@unimap.edu.my

Mrs. Siti Khalijah Bt. Hasan@Yusuf
Cert. Of Mech. Eng (PSA)
Tel: 04-9852551
E-mail: sitikhalijah@unimap.edu.my

Mr. Mohammad Farid B. Yusoff
Cert. Of Mech. Eng (PKU)
Tel: 04-9852551
E-mail: mohdfarid@unimap.edu.my

Mr. Sufyian B. Abu Suhor
(Politeknik Tuanku Syed Sirajuddin)
Cert. Of Mech. Eng
(Politeknik Tuanku Syed Sirajuddin)
Tel: 04-9852551
Email: sufyian@unimap.edu.my

Mr. Eirwan B. Rusli
(Politeknik Tuanku Syed Sirajuddin)
Tel: 04-9854949
Email: eirwanrusli@unimap.edu.my

Mr. Shaharizam B. Shafeei
Malaysian Skill Certificate- Level 2 in
Milling and Lathe Operation (IKM Lumut)
Tel: 04-9852303
E-mail: shaharizam@unimap.edu.my

Mrs. Hafizi B. Hassan Al-Kamal
General Office Assistant
Tel: 04-9851114
E-mail: hafizi@unimap.edu.my

Mrs. Alma Azizah Bt. Abdul Rahim
Assistant Registrar
Tel: 04-9851117
E-mail: alma@unimap.edu.my

Mrs. Haidasafinas Bt. Abas
Secretary’s Office
Tel: 04-9851284
E-mail: haida@unimap.edu.my

Mrs. Sharifah Hanita Bt. Syed Ahmad
Senior Administrative Assistant
Tel: 04-9851114
E-mail: sh.hanita@unimap.edu.my

Mrs. Diliana Bt. Mohd Fauzi
Administrative Assistant
(Clerical & Operations)
Tel: 04-9851114
Email: diliana@unimap.edu.my
COURSES OFFERED BY ENGINEERING CENTRE

There are two core courses offered by Engineering Centre for undergraduate's level:

• Engineering Skills (ECT111/ECT112)

And also a core course:

• Basic Engineering Skill (DCT100)

ENGINEERING SKILLS (ECT111/ECT112)

• AutoCAD Software Module consist of drawing and editing, layer control and properties modification, hatching, and dimensioning, text and template drawing
• Technical Drawing consists of geometric construction, lettering, tolerance, sectional view and symbols
• MATLAB Software Module consists of M-Files, Projection format, Matrix, vector, scalar and plotting
• Mechanical workshop consists of basic measurement, machining, welding, fitting, sheet metal
• PCB Fabrication process
• PCB design by using OrCAD Software.
• Electrical domestic wiring.
• Mechanical workshop - machining
• PLC - Programmable Logic Control.

BASIC ENGINEERING SKILL, (DCT 100)

• Basic knowledge of computer
• Construction and measurement of electronic circuit
• Basic knowledge of electrical wiring
• An exposure to measurement techniques, fitting and sheet metal process
• Experience to the welding techniques and handling of mechanical machine

LAB FACILITIES

PCB FABRICATION LAB
• Introduction to advance Printed Circuit Board process development including single sided and double sided PCB production. We also can produce multi layer PCB process up to 6 layers.

PLC LAB
• PLC application in automation

CAD/CAM LAB and COMPUTER LAB
• Introducing software of AUTOCAD, MATLAB and ORCAD.

ELECTRICAL WIRING WORKSHOP
• Domestic wiring, installation of surface wiring, PVC conduit and steel conduit wiring systems

MECHANICAL WORKSHOP
• Basic mechanical measurements, sheet metal process, fitting, welding, and machining

BASIC COMPUTER LAB
• Hardware assembly and software installation

TEACHING FACTORY
• Injection moulding, CNC turning, CNC milling, wave solder machine, Rapid Prototyping machine, Rotional machine, Vacuum casting, powder metalogy, EDM wire cut

TECHNICAL DRAWING STUDIO
• Basic technical drawing equipment.
Course Synopses

ECT111
ENGINEERING SKILLS

Course Synopsis

This subject is 100% practical coursework and carried out 3 units credit hours. This course contains six modules which are Basic Workshop, Machining, Wiring, PCB Design, PLC, AutoCAD and Technical Drawing that specifically planned for electronic based programs.

Course Outcomes

- Ability to apply and construct a basic skills and standard practiced of mechanical machines and equipments
- Ability to apply and construct the basic skills and standard practiced of domestic wiring.
- Ability to apply and construct a logic system using common controller tool (PLC).
- Ability to apply construct a standard practiced of manual technical drawing and able to design a product using common software (AutoCAD).
- Ability to apply and construct the basic skills and standard practiced of PCB layout design and fabrication process.

Syllabus

Technical Drawing

- DRAW, DISCUSS and APPLY the engineering practice to deliver an accurate technical drawing

Software: AutoCAD

- DEFINE, DISCUSS and USE the engineering software (AutoCAD) as a tool to create 2D and 3D product

ECT112
ENGINEERING SKILLS

Course Synopsis

This subject is 100% practical coursework and carried out 3 units credit hours. This course contains six modules which are Basic Workshop Machining, Wiring, Basic Electronics, Matlab, AutoCAD and Technical Drawing that specifically planned for non-electronic based programs.

Course Outcomes

- Ability to apply and construct a basic skills and standard practiced of mechanical machines and equipments
- Ability to apply and construct a basic skills and standard practiced of domestic wiring.
- Ability to apply and construct a mathematical analysis using Matlab software.
- Ability to apply and construct a basic skills and standard practiced of manual technical drawing and able to design a product using common software (AutoCAD).
- Ability to apply and construct a basic skill of electronics and its applications.

Syllabus

Technical Drawing

- DRAW, DISCUSS and APPLY the engineering practice to deliver an accurate technical drawing

Software: AutoCAD

- DEFINE, DISCUSS and USE the engineering software (AutoCAD) as a tool to create 1D and 3D product.

References

Basic Workshop
- DEFINE and DEMONSTRATE the function metrology equipments. DESCRIBE and APPLY the techniques of fitting, sheet metal forming and metal joining (welding).

Machining
- DISCUSS and USE a standard mechanical engineering machines such as Milling, Lathe and Grinding Machine to produce general component.

Domestic Wiring
- DISCUSS, DEMOstrate and APPLY the techniques of domestic wiring such as surface and conduit (PVC and GI) techniques.

Matlab
- DEFINE, DISCUSS and USE of common mathematical analysis software (MATLAB) to calculate matrix, differential, integration, graph, and other mathematical formulas.

Basic Electronics
- DEFINE, DISCUSS and USE of basic electronic devices, electronic components, soldering techniques, testing techniques, measurement techniques and its application.

References
INSTITUTE OF ENGINEERING MATHEMATICS
University Malaysia Perlis (UniMAP),
Taman Bukit Kubu Jaya,
Jalan Serawak,
02000 Kuala Perlis,
Perlis.

Tel : 04-9855430/5406
Fax : 04-9855432
Introduction

The Institute of Engineering Mathematics is a centre of planning and monitoring the curriculum of mathematical engineering in UniMAP. Instead of a research centre in mathematical engineering, the Institute of Engineering Mathematics provides specialists in method of mathematical research, simulations, statistics and operational research. Besides that, this institute plays a role as training centre for UniMAP and others in related field of mathematics.
DEAN
ASSOCIATE PROFESSOR ABDULL HALIM BIN ABDUL
E-mail: abdhalim@unimap.edu.my

DEPUTY DEAN
MR. MOHD SYAFARUDY BIN ABU
E-mail: syafarudy@unimap.edu.my

CHAIRPERSON OF DIPLOMA PROGRAMME
MR. KHAIRUL ANWAR BIN MOHAMD KHAZALI
E-mail: khairulanwar@unimap.edu.my

CHAIRPERSON OF DEGREE PROGRAMME
MR. AHMAD KADRI BIN JUNOH
E-mail: kadri@unimap.edu.my

ASSISTANT REGISTRAR
MRS. AZILAH BINTI ABIDIN
E-mail: azilah@unimap.edu.my
<table>
<thead>
<tr>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof Qamar Nasir Usmani</td>
</tr>
<tr>
<td>Ph.D.(Theoretical Physic), Aligarh Muslim University India</td>
</tr>
<tr>
<td>M.Sc. (Physic), Aligarh Muslim University India</td>
</tr>
<tr>
<td>Tel: 04-9851389/1340</td>
</tr>
<tr>
<td>E-mail: qamar@unimap.edu.my</td>
</tr>
<tr>
<td>Associate Professor Abdull Halim Abdul</td>
</tr>
<tr>
<td>M.Sc (Statistics), Brunel University</td>
</tr>
<tr>
<td>B.Sc. (Hons) Mathematics, Universiti Malaya</td>
</tr>
<tr>
<td>Tel: 04-9855430</td>
</tr>
<tr>
<td>E-mail: abdhalim@unimap.edu.my</td>
</tr>
<tr>
<td>Associate Professor Drs Mohd Said Bono</td>
</tr>
<tr>
<td>M.Sc Mathematics, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>M. Ed,Drs, IKIP Bandung, Indonesia</td>
</tr>
<tr>
<td>B. Ed Mathematics, Universiti Sumatera Utara, Indonesia</td>
</tr>
<tr>
<td>Tel: 04-9855924</td>
</tr>
<tr>
<td>E-mail: saidbono@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Mohd Syafarudy Abu</td>
</tr>
<tr>
<td>M.Sc. (Mathematics), Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>B.Sc (Hons) Mathematics, Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9852279</td>
</tr>
<tr>
<td>E-mail: syafarudy@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Ahmad Kadri Junoh</td>
</tr>
<tr>
<td>M.Sc. (Mathematics), Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>B.Eng.(Hons) Mechanical, Akita University, Japan</td>
</tr>
<tr>
<td>Tel: 04-9855949</td>
</tr>
<tr>
<td>E-mail: kadri@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Khairul Anwar Mohamad Khazali</td>
</tr>
<tr>
<td>M.Sc (Mathematics), Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9851332</td>
</tr>
<tr>
<td>E-mail: khairulanwar@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Lim Eng Aik</td>
</tr>
<tr>
<td>M.Sc , Mathematics, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>B.Sc. (Hons) Matematik Tulen , Universiti Sains Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9855485</td>
</tr>
<tr>
<td>E-mail: ealim@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Wan Mohd Khairy Adly Wan Zaimi</td>
</tr>
<tr>
<td>M.Sc (Mathematics), Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9855042</td>
</tr>
<tr>
<td>E-mail: khairy@unimap.edu.my</td>
</tr>
<tr>
<td>Mr. Wan Zuki Azman Wan Muhamad</td>
</tr>
<tr>
<td>M.Sc. Engineering Mathematics, Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9855161</td>
</tr>
<tr>
<td>E-mail: wanzuki@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Nor Hazadura Hamzah</td>
</tr>
<tr>
<td>M.Sc.Mathematics, Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>B.Sc (Hons) Mathematics, Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9855937</td>
</tr>
<tr>
<td>E-mail: hazadura@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Najah Ghazali</td>
</tr>
<tr>
<td>M.Sc. Mathematics, Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>B.Sc Hons (Mathematics), Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9853149</td>
</tr>
<tr>
<td>E-mail: najah@unimap.edu.my</td>
</tr>
<tr>
<td>Mrs. Nurul Huda Abdul Aziz</td>
</tr>
<tr>
<td>M.Sc. Mathematics, Universiti Kebangsaan Malaysia, B.Sc with Edu Hons(Mathematics), Universiti Pendidikan Sultan Idris</td>
</tr>
<tr>
<td>Tel: 04-985430</td>
</tr>
<tr>
<td>E-mail: hudaaziz@unimap.edu.my</td>
</tr>
<tr>
<td>Miss Wan Nurhadani Wan Jaafar</td>
</tr>
<tr>
<td>M.Sc. Mathematics, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>B.Sc Mathematics, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>B.Sc. (Hons) Mathematics, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>Tel: 04-9853734</td>
</tr>
<tr>
<td>E-mail: hadani@unimap.edu.my</td>
</tr>
</tbody>
</table>
Miss Siti Jasmida Jamil
M.Sc. Mathematics, Universiti Sains Malaysia
B. Applied Sc. (Hons) Mathematical Modelling, Universiti Sains Malaysia
Tel: 04-9852209
E-mail: jasmida@unimap.edu.my

Miss Shakila Saad
M.Sc. Mathematics, Universiti Teknologi Malaysia
B.Sc. (Hons) Mathematics, Universiti Teknologi Mara
Dip. In Sc. Computer, Universiti Teknologi Mara
Tel: 04-9851390
E-mail: shakila@unimap.edu.my

Miss Wan Nor Munirah Ariffin
M.Sc. Mathematics, Universiti Teknologi Malaysia
B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia
Tel: 04-9855430/5911
E-mail: munirah@unimap.edu.my

Miss Elyana Sakib
M.Sc. Mathematics, Universiti Kebangsaan Malaysia
B.Sc w Edu (Hons)-Statistics, Universiti Putra Malaysia
Tel: 04-9855857
E-mail: elyana@unimap.edu.my

Miss Nurhidayah Omar
M.Sc. Mathematics, Universiti Kebangsaan Malaysia
Bachelor of Science and Computer with Education (Mathematics), UTM
Tel: 04-9855811
E-mail: hidayahomar@unimap.edu.my

Miss Shazalina Mat Zin
M.Phil. Applied Mathematics, Universiti Malaya
B.Sc Hons (Industrial & Computational Mathematics), Universiti Malaya
Tel: 04-9855908
E-mail: shazalina@unimap.edu.my

Miss Noor Adila Aluwi Shakir
Master of Mechanical (Industrial Engineering), Universiti Teknologi Malaysia
B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia
Tel: 04-985761
E-mail: noradilla@unimap.edu.my

Miss Nor Fashihah Mohd Noor
Master of Science (Hons) Statistics, Universiti Kebangsaan Malaysia
B.Sc Hons (Statistics), Universiti Kebangsaan Malaysia
Tel: 04-985582
E-mail: norfashihah@unimap.edu.my

Miss Alezar Mat Ya'acob
Master Education (Mathematics), Universiti Teknologi Malaysia
Bachelor of Science (Computer), Universiti Teknologi Malaysia
Tel: 04-9855430
E-mail: alezar@unimap.edu.my

Miss Siti Haida Ismail
Master of Mechanical (Industrial Engineering), Universiti Teknologi Malaysia
B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia
Tel: 04-985882
E-mail: sitihaida@unimap.edu.my

Mr. Muhammad Zaini Ahmad
M. Sc (Mathematics), Universiti Kebangsaan Malaysia
B.Sc (Hons) (Mathematics), Universiti Putra Malaysia
E-mail: mzaini@unimap.edu.my

Mrs. Nursalasawati Rusli
M.Sc (Mathematics), Universiti Kebangsaan Malaysia
B.Sc (Hons) (Mathematics), Universiti Sains Malaysia
E-mail: nursalasawati@unimap.edu.my

Mrs. Haslina Zakaria
M.Sc, Universiti Kebangsaan Malaysia
B.Sc (Hons) Mathematics, Universiti Teknologi Malaysia
E-mail: haslinazakaria@unimap.edu.my

Miss Siti Rohana Goh Abdullah
B.Sc(Hons) Decision Science, Universiti Utara Malaysia
Tel: 04-9854894
E-mail: sitirohana@unimap.edu.my

Miss Alezar Mat Ya'acob
Master Education (Mathematics), Universiti Teknologi Malaysia
Bachelor of Science (Computer), Universiti Teknologi Malaysia
Tel: 04-9855430
E-mail: alezar@unimap.edu.my

Miss Siti Haida Ismail
Master of Mechanical (Industrial Engineering), Universiti Teknologi Malaysia
B.Sc Hons (Industrial Mathematics), Universiti Teknologi Malaysia
Tel: 04-985882
E-mail: sitihaida@unimap.edu.my

Mr. Muhammad Zaini Ahmad
M. Sc (Mathematics), Universiti Kebangsaan Malaysia
B.Sc (Hons) (Mathematics), Universiti Putra Malaysia
E-mail: mzaini@unimap.edu.my

Mrs. Maz Jamilah binti Masnan
M.Sc Decision Science, Universiti Utara Malaysia
BA Statistics, Michigan State University
Diploma in Statistics, Universiti Teknologi Mara
E-mail: mazjamilah@unimap.edu.my

Miss Sam Teek Ling
M.Sc. Mathematics, Universiti Sains Malaysia
B.Sc. (Hons) Mathematics, Universiti Sains Malaysia
E-mail: tsam@unimap.edu.my
ADMINISTRATIVE STAFF

Mrs. Azilah Abidin
Assistant Registrar
Tel: 04-9855406
Email: azilah@unimap.edu.my

Mrs. Jasliza Johari
Secretary
Tel: 04-9855430
Email: jasliza@unimap.edu.my

Mrs. Nainatul Farzuha Nor
Admin Assistant (Financial)
Tel: 04-9855911
Email: nainatul@unimap.edu.my

Mr. Muhamad Fahmi Abdullah
Admin Assistant (P/O)
Tel: 04-9855902
Email: mfahmi@unimap.edu.my

Mr. Muhammad Nasrudin Norsilan
Office Assistant
Email: mnasrudin@unimap.edu.my
COURSES OFFERED

DIPLOMA COURSES

DQT101/3 Mathematics I
DQT102/3 Mathematics II
DQT203/3 Mathematics III

DEGREE COURSES

EQT101/3 Engineering Mathematics I
EQT102/3 Engineering Mathematics II
BQT133/3 Business Mathematics
BQT173/3 Business Statistics
EQT203/3 Engineering Mathematics III
EQT221/3 Discrete Mathematics & Linear Algebra
EQT241/3 Intermediate Mathematics
EQT271/3 Engineering Statistics
EQT272/3 Probability And Statistics
EQT373/4 Statistics for Engineers
COURSE SYLLABUS

EQT101/3 : ENGINEERING MATHEMATICS I

Course Synopsis
This course will introduce the fundamental principles and concepts in linear algebra and calculus. The topics that will be discussed in this course are complex numbers, matrices, vectors, and differentiation & integration and partial differential equations also topic of Partial Derivatives.

Course Outcomes

CO1:
Ability to relate relevant concepts and methods in algebra.

CO2:
Ability to relate concepts and methods in calculus.

CO3:
Ability to evaluate solutions of engineering problems using relevant concepts and methods.

References

EQT102/3 : ENGINEERING MATHEMATICS II

Course Synopsis
This course will introduce students to ordinary differential equations. Topics covered include solutions of ordinary differential equations including existence and uniqueness theorems, analytical methods of solutions for first and second order differential equations, Cauchy-Euler equations and also applications to modeling. The course teach students on how to solve differential equations, how to graph solutions and how to interpret solutions expressed in either algebraic or graphical form. The course will also introduce students to Laplace transforms method to solve differential equations and in the chapter four students will be introduced to Fourier Series expansion of a function. In the last chapter, students will be introduced to the method of separation of variables to solve partial differential equations problem.

Course Outcomes

CO1:
Ability to relate differential equations which covered first and second order ordinary differential equations and partial differential equations

CO2:
Ability to apply the Laplace transforms method to solve and analyze certain differential equations problems theoretically and physically.

CO3:
Ability to apply the fundamental understanding of Fourier series and able to express Fourier series and Fourier series expansions to any given function.

CO4:
Ability to relate the differential equations and analyze certain physical problems.

References

1. Introduction To Ordinary Differential Equation (2010), Penerbit UniMAP

BQT133/3 : BUSINESS MATHEMATICS

Course Synopsis
The purpose of the course is to provide the student with mathemati--
Institute of Engineering Mathematics

Course Outcomes

CO1: Identify and apply the knowledge of matrix algebra to solve the business models.

CO2: Identify and apply the knowledge in mathematics to solve the financial problems.

CO3: Apply the knowledge of Differential Calculus and select suitable methods to solve the business problems.

CO4: Apply the knowledge of Integral Calculus and select suitable methods to solve the business problems.

References

BQT173/3: BUSINESS STATISTICS

Course Synopsis

This course covers topics on data and statistics, descriptive statistics (tabular, graphical presentation and numerical measures), introduction to random variable, discrete and continuous probability distributions, sampling and sampling distributions, estimation, hypothesis tests, regression and correlation, and introduction to multiple regression.

Course Outcomes

CO1: Ability to demonstrate knowledge and understanding of elements in business statistics.

CO2: Ability to apply knowledge and concept of business statistics in decision making.

CO3: Ability to perform statistical analysis, estimation and inference regarding one sample.

CO4: Ability to perform statistical analysis, estimation and inference regarding two and more samples.

References

EQT203/3: ENGINEERING MATHEMATICS III

Course Synopsis

This course introduces the definition and concepts in vector calculus, numerical methods and introduction on basic of finite element. The topics discuss includes differentiation and integration of vectors, surface and volume integral, green's, gauss and stokes theorems, curve fitting, interpolation, numerical integration, numerical solution of differential equations, introduction to finite element for 1-D heat transfer problem. Important concepts related to vector fields, numerical method and basic 1-D finite element method are introduce in this course and then follow by the use of these concepts in solving mathematical problem.

Course Outcomes

CO1: Ability to apply vector calculus concepts to solve single, double or triple integrals.
Course Outcomes

CO1:
Ability to **identify** and **choose** the suitable concepts of discrete mathematics in solving engineering problems

CO2:
Ability to **solve** numerical problems by selecting suitable numerical methods

CO3:
Ability to **relate** the weighted residual approach and finite element method to solve engineering problems

References

EQT221/3: DISCRETE MATHEMATICS & LINEAR ALGEBRA

Course Synopsis
This course introduces the definition and concepts in discrete mathematics and linear algebra which is an essential tools in almost all subareas of computer science and communication systems. The topics discuss includes sets and functions, logic, theory number and cryptography, matrices and linear transformation, vector spaces and inner product spaces.

EQT241/3: INTERMEDIATE MATHEMATICS

Course Synopsis
This course introduces the definition and concepts in vector calculus and numerical methods. Three important concepts related to scalar and vector fields. The topics discuss also includes numerical differentiation and numerical integration, numerical solution of differential equations and finite difference method.

Course Outcomes

CO1:
Ability to **define** the vector integrals and **evaluate** the line, volume and surface integral using Green, Guass and Stoke theorem.

CO2:
Ability to **find** the numerical solution of the equation and **use** the suitable numerical methods to **solve** the problems.

CO3:
Ability to **relate** the relevant concept of vector calculus and numerical methods to solve engineering problems

References
EQT271/3: ENGINEERING STATISTICS

Course Synopsis

This course introduces the fundamental concepts in statistics. The definition of statistics and basic concepts of statistics such as collection of data, data summary and presentation, probability distribution and sampling distribution will be introduced to the students in topic basic statistics. This course also teaches the students on how to make a statistical inference which are estimation and hypothesis testing. Apart from that, students will learn on how to run statistical test and analyze the results obtained. These skills will be taught in topic introductory linear regression (Simple linear regression, Least squares method, Test for linearity of regression and Pearson product moment correlation coefficient), analysis of variance (one-way and two-way ANOVA) and nonparametric statistics (The test, Sign test, Mann-Whitney test, Kruskal Wallis test, Wilcoxon signed rank test and Spearman rank correlation).

Course Outcomes

CO1: Ability to understand, apply and explain the basic concepts of statistics.

CO2: Ability to solve problems using suitable statistical inference.

CO3: Ability to construct the model and analyze the result from ANOVA table and simple linear regression.

CO4: Ability to apply the basic methodology of nonparametric statistics to solve engineering problems.

References

EQT272/3: PROBABILITY & STATISTICS

Course Synopsis

This course provides an elementary introduction to probability and statistics with applications. Topics include probability theorem, random variables, probability distribution, statistical inference which is including estimation and hypothesis testing and finally the regression concept.

Course Outcomes

CO1: Ability to understand, apply and explain the basic concepts of probability distribution.

CO2: Ability to apply hypothesis testing and simple linear regression model to solve engineering problems.

References

EQT373/4: STATISTICS FOR ENGINEERS

Course Synopsis

Topics to be covered will include collection and summarization of data, measures of central tendency and dispersion, random variables, discrete and continuous probability distributions, sampling distribution, estimation, hypothesis testing, introductory linear regression, analysis of variance, introductory design of experiments.
Course Outcomes

CO1:
Ability to apply fundamental concepts of probability distributions and statistics.

CO2:
Ability to apply knowledge of statistics in analyzing and interpreting data.

CO3:
Ability to apply knowledge of statistics for decision making and to solve engineering problems.

CO4:
Ability to apply knowledge of statistics for designing the engineering experiment.

CO5:
Ability to relate relevant concepts and practices of statistical process control in the manufacturing processes.

References

CENTRE FOR INDUSTRIAL COLLABORATION (CIC)
Universiti Malaysia Perlis (UniMAP),
No. 22 & 24, Kompleks Pentadbiran UniMAP Taman Kechor,
Taman Kechor Indah Fasa 2,
Jalan Abi Tok Hashim,
01000 Kangar, Perlis.

Tel : 04-979 8877
Fax : 04-979 8885/8876
Introduction

The Centre for Industrial Collaboration (CIC) was established on 18th March 2004. It was formed to enable UniMAP to achieve its goal in providing the industry with technically competent graduates. This will eventually support the nation building. CIC depicts a multifaceted organization as it offers programs and academic activities which emphasize on participation and commitment from various industrial sectors. Centralized programs and activities by CIC are recognized as the core engineering courses and activities. These programs are aimed to facilitate the upgrade of UniMAP’s competitive status in designing, processing and producing various products with profound inclination toward engineering. Among the training courses offered with the involvement from industries are Industrial Exposure (IndEx), Industrial Entrepreneur (IndEnt), Industrial Training (InTra), Industrial Technical Lecture (InTeLect), Staff Internship, forum and seminars with industries. The program schedules will be notified to the students from time to time through UniMAP portal.
DIRECTOR
DR. YUFIRDIN BIN WAHAB
E-mail: yufridin@unimap.edu.my

DEPUTY DIRECTOR
(Academic & Consultancy)
MR. MOHD. ASYRAF BIN CHE DOI
E-mail: asyraf@unimap.edu.my

DEPUTY DIRECTOR
(Employability & Career)
MR. MUHAMMAD IZMER BIN YUSOF
E-mail: izmer@unimap.edu.my

ASSISTANT REGISTRAR
MR. MOHD. ROSLI BIN ABDUL GHANI
E-mail: mohdrosli@unimap.edu.my

ASSISTANT REGISTRAR
MR. MOHD. NIZAM BIN ISMAIL
E-mail: m.nizam@unimap.edu.my

ASSISTANT REGISTRAR
MR. CHE KU KAIRULAZAM BIN CHE KU ABDULLAH
E-mail: chekuazam@unimap.edu.my

ASSISTANT REGISTRAR
MRS. SHARIFAH FAUHAAH BT. SYED ABAS
E-mail: sh.fauhah@unimap.edu.my

ASSISTANT REGISTRAR
SITI NUR IDAYU BINTI ALIAS
E-mail: nuridayualias@unimap.edu.my
LECTURERS

Dr. Yufridin Bin Wahab
B.Eng (Electrical & Electronic), USM
M.Sc (Rekabentuk VLSI), USM
Ph.D. Micro Electro Mechanical System, University of Victoria, Australia
Tel: 04-979 8888
E-mail: yufridin@unimap.edu.my

Mr. Mohd. Asyraf Bin Che Doi
BSc (Industrial Engineering) - University of Missouri, USA
MPhil (Ergonomics) - University of Nottingham, UK
Tel: 04979 8873
E-mail: asyraf@unimap.edu.my

Mr. Muhammad Izmer Bin Yusof
MSc (Pengajian Strategi dan Politik Antarabangsa), UUM
Bac (Sains Pemutusan, major Politik Antarabangsa), UUM
Tel: 04979 8873
E-mail: izmer@unimap.edu.my

ASSISTANT ADMINISTRATIVE OFFICER

Mr. Mohd. Faizoo Bin Othman
Tel: 04-979 8902
E-mail: faizoo@unimap.edu.my

Mr. Mohd. Shahfi Bin Ismail
Tel: 04-979 8902
E-mail: shahfi@unimap.edu.my

SECRETARY

Mrs. Nor Azlindamazlini Binti Mahamad
Tel: 04-979 8877
E-mail: dir_cic@unimap.edu.my

ADMINISTRATIVE ASSISTANT

Mrs. Istiharah Binti Ishak
Tel: 04-979 8871
E-mail: isti@unimap.edu.my

Mrs. Nor Faezah binti Mirdukhim @ Mustapa
Tel: 04-979 8869
E-mail: faezahmustapa@unimap.edu.my

Mr. Azhar Bin Ali
Tel: 04-979 8869
E-mail: azhar_alie@unimap.edu.my

GENERAL WORKER

Mr. Abang Syamri Bin Ahmad
Tel: 04-979 8872
E-mail: syamri@unimap.edu.my
COURSE SYLLABUS

COURSE TITLE: INDUSTRIAL TRAINING (INTRA)

COURSE CODE:
EIT300 (Degree Programme)
EIT301 (Student Exchange Programme)
DIT361 (Diploma Programme)

Course Synopsis

Students will be exposed to technical and application aspects as well as other organizational aspects such as company organization structure, company operation, department function, work procedure, safety procedure, management, communication, technical skills, project management and presentation. The students are also required to submit their log book and report at the end of the Industrial Training. Overall, the course is a practical-based course.

References

1. UniMAP Industrial Training Guideline Rev A (July 2008)
2. UniMAP Industrial Training Log Book

COURSE TITLE: INCUBATOR PROGRAMME

COURSE CODE: BIT291

Course Synopsis

This course gives direct exposure to the students to the real entrepreneurship and business world. Students will be stationed in business incubators, namely assigned to one of the companies which has just started business and still operating in the business incubator. Students will go through the experience of starting a company / business including being exposed to the company registration procedures, banking transactions, manufacture of new product, business network construction, management of the company and so on. Students will also get exposure communicating in actual business world and this will develop their skills in constructing entrepreneurial network. Students will be required to send their log books and final reports towards the end of the Incubator Program. Generally, this course is directly practical based.

References

1. UniMAP Industrial Training Guideline Rev A (July 2008)
2. UniMAP Industrial Training Log Book

COURSE OFFERED

EIT 300/6 INDUSTRIAL TRAINING [DEGREE IN ENGINEERING PROGRAMME]

Course Synopsis

Students will be exposed to technical and application aspect as well as other aspect such as company organization structure, company operation, department function, work procedure, safety procedure, management, communication, technical skills, project management and presentation. The students are also required to submit their log book and final report at the end of Industrial Training. The overall course component is practical based with training duration of about 12 weeks.

Course Outcomes

CO1: Ability to adapt to real working environment.

CO2: Ability to relate the theoretical knowledge with application in industry.
BIT190/3, BIT290/3
INDUSTRIAL TRAINING
[DEGREE IN BUSINESS
INTERNATIONAL BUSINESS)
PROGRAMME]

Course Synopsis

The course will expose students to the technical and application aspects as well as other organizational aspects such as company organization structure, company operation, department function, work procedure, safety procedure, management, communication, technical skills, project management and presentation. The students are also required to submit their log book and report at the end of the Industrial Training. Overall, the course is a practical-based course.

Course Outcomes

CO1:
Ability to display good work performance during training period

CO3:
Ability to develop skills in work ethics, communication, management, teamwork etc.

CO4:
Ability to write a technical report.

References

1. UniMAP Industrial Training Guideline Rev A (July 2008)
2. UniMAP Industrial Training Log Book

BIT291/6
INDUSTRIAL TRAINING
[DEGREE IN BUSINESS
ENGINEERING ENTREPRENEURSHIP)
PROGRAMME]

Course Synopsis

This course gives direct exposure to the students to the real entrepreneurship and business world. Students will be stationed in business incubators, namely assigned to one of the companies which has just started business and still operating in the business incubator. Students will go through the experience of starting a company / business including being exposed to the company registration procedures, banking transactions, manufacture of new product, business network construction, management of the company and so on. Students will also get exposure communicating in actual business world and this will develop their skills in constructing entrepreneurial network. Students will be required to send their log books and final reports towards the end of the Incubator Program. Generally, this course is directly practical based.

Course Outcomes

CO1:
Ability to display good work performance during incubation training period

CO3:
Ability to describe and demonstrate knowledge regarding host company and industrial training activities.

CO2:
Ability to demonstrate good personality including communication skills, leadership and work ethics during incubation training period

CO3:
Ability to describe and demonstrate knowledge regarding Host Company and entrepreneurial training activities.

References

1. UniMAP Industrial Training Guideline Rev A (July 2008)
2. UniMAP Industrial Training Log Book
CO-CURRICULUM CENTRE
Universiti Malaysia Perlis (UniMAP),
Taman Utara Jejawi (opposite of the Perlis JPJ building),
Jalan Jejawi Sematang,
02600 Jejawi, Arau, Perlis.

Tel : 04 – 9797908/7913/7911
Fax : 04 – 9797907
Introduction

The Department of Higher Education through a letter dated August 3rd, 2008 had instructed Co-curriculum Centres to be established at all Malaysian Public Institutions of Higher Education. The aim is to achieve the goal that had been outlined in the Country Higher Education Strategic Plan which is to strengthen the ‘learning outcomes’ through co-curriculum activities.

UniMAP Co-curriculum Unit was established in the year 2002 and was placed under the Centre for Communication Skills and Entrepreneurship. Then, on the 8th of June 2010 the Co-curriculum Centre had moved out from the Centre for Communication Skills and Entrepreneurship, and started operating at a new location at Taman Jejawi Utara (opposite of the Perlis JPJ building). On the 29th of July 2010, the establishment of Co-curriculum Centre was officially launched by the Honourable Dato’ Vice Chancellor of UniMAP.

The Co-curriculum Centre offers a lot of co-curriculum and uniformed bodies courses. All degree students are compulsory to take 1 course or 1 unit. Co-curriculum Centre currently offers up to 33 co-curriculum courses for degree students regardless of their academic programmes.
DIRECTOR
MR. AHMAD FAHMI MAHAMOOD
E-mail: fahmi@unimap.edu.my

DEPUTY DIRECTOR
MR. SYED ZULKARNAIN SYED IDRUS
E-mail: syzul@unimap.edu.my

CHAIRPERSON OF PALAPES PROGRAMME
MR. VITHYACHARAN A/L RETNASAMY
E-mail: rcharan@unimap.edu.my

HONORARY OFFICER
STUDENTS VOLUNTARY POLICE CORP (ACADEMIC)
MR. MOHAMAD NUZAIHAN MD. NOR
E-mail: m.nuzaihan@unimap.edu.my

ASSISTANT REGISTRAR
MRS. ISMA IRINI SHAFIE
E-mail: isma@unimap.edu.my
LECTURERS

Mr. Ahmad Fahmi Mahamood
M.S (Communication Technology) UPM
B. Comm (Corporate Communication) UPM
Tel: 04-9797913
E-mail: fahmi@unimap.edu.my

Mr. Syed Zulkarnain Syed Idrus
B.Sc. (Information Systems Engineering), UMIST, UK (2001)
BTEC ND (Information Technology Applications), North Trafford College, UK (1997)
Tel: 04-9797912
E-mail: syzul@unimap.edu.my

ADMINISTRATIVE STAFF

Mrs. Isma Irini Shafie
Assistant registrar
Tel: 04-9797911
E-mail: isma@unimap.edu.my

Mrs. Nur Nadiah Jalil
Assistant Administrative Officer
Tel: 04-9797910
E-mail: nurnadiah@unimap.edu.my

Miss Syarifah Syaimaa Binti Syed Hamzah
Office secretary
Tel: 04-9797913
Email: syaimaa@unimap.edu.my

Mr. Zulkefly Wahab
Administrative Assistant (P/O)
Tel: 04-9797908
Email: zulkefly@unimap.edu.my

Mrs. Nur Syafarina Che Ani
Administrative Assistant (P/O)
Tel: 04-9797909
Email: syafarina@unimap.edu.my

Mr. Mohd Faiz Musa
Administrative Assistant (P/O)
Tel: 04-9797908
Email: faizmusa@unimap.edu.my

Miss Roziana Binti Ahmad Tajuddin
Administrative Assistant (P/O)
Tel: 04-9797908
Email: rozanatajuddin@unimap.edu.my

Miss Nurul Ashikin Binti Mohd Josrie
Administrative Assistant (P/O)
Tel: 04-9797908
Email: nurulashikin@unimap.edu.my

Mr. Wan Khairul Faiz Kamardiin
Office Assistant
Tel: 04-9797908
Email: khairulfaiz@unimap.edu.my

Mr. Hasnul Hadi Bin Shawal Bakhtiar
Office Assistant
Tel: 04-9797908
Email: hasnul@unimap.edu.my

Mrs. Che Ku Nur Aida Binti Che Ku Rahim
Office Assistant
Tel: 04-9797908
Email: nuraida@unimap.edu.my
CO-CURRICULUM COURSES OFFERED BY CO-CURRICULUM CENTRE

During their study, all the degree students must take 1 unit from the courses that had been offered by the following divisions below:

<table>
<thead>
<tr>
<th>NO.</th>
<th>COURSE</th>
<th>COURSE CODE</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Golf</td>
<td>EUW101</td>
<td>* OFFERED IN SINGLE COURSE</td>
</tr>
<tr>
<td>2</td>
<td>Baseball</td>
<td>EUW102</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Woodball</td>
<td>EUW103</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Football</td>
<td>EUW104</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Netball</td>
<td>EUW105</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tenni</td>
<td>EUW106</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Equestrian</td>
<td>EUW107</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Weightlifting</td>
<td>EUW108</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Foundations of Gamelan</td>
<td>EUW151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamelan II</td>
<td>EUW251</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamelan III</td>
<td>EUW351</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Jazz Band I</td>
<td>EUW152</td>
<td>* OFFERED IN PACKAGES</td>
</tr>
<tr>
<td></td>
<td>Jazz Band II</td>
<td>EUW252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jazz Band III</td>
<td>EUW352</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Brass Band I</td>
<td>EUW153</td>
<td>* OFFERED IN PACKAGES</td>
</tr>
<tr>
<td></td>
<td>Brass Band II</td>
<td>EUW253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brass Band III</td>
<td>EUW353</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Angklung I</td>
<td>EUW154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angklung II</td>
<td>EUW254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angklung III</td>
<td>EUW354</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arts of Creative Movement</td>
<td>EUW155</td>
<td>* OFFERED IN SINGLE COURSE</td>
</tr>
<tr>
<td>14</td>
<td>ROTU Army I</td>
<td>EUW161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROTU Army II</td>
<td>EUW261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROTU Army III</td>
<td>EUW361</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ROTU Army IV</td>
<td>EUW461</td>
<td>* OFFERED IN PACKAGES</td>
</tr>
<tr>
<td></td>
<td>ROTU Army V</td>
<td>EUW561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROTU Army VI</td>
<td>EUW661</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>The Malaysian Red Crescent Societies Certification Course I</td>
<td>EUW163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Malaysian Red Crescent Societies Certification Course II</td>
<td>EUW263</td>
<td>* OFFERED IN SCHEDULED PACKAGES</td>
</tr>
<tr>
<td></td>
<td>The Malaysian Red Crescent Societies Certification Course III</td>
<td>EUW363</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SVPC- I @ Students Voluntary Police Corp</td>
<td>EUW166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVPC- 2 @ Students Voluntary Police Corp</td>
<td>EUW266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVPC- 3 @ Students Voluntary Police Corp</td>
<td>EUW366</td>
<td>* OFFERED IN PACKAGES</td>
</tr>
<tr>
<td></td>
<td>SVPC- 4 @ Students Voluntary Police Corp</td>
<td>EUW466</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVPC- 5 @ Students Voluntary Police Corp</td>
<td>EUW566</td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>COURSE</td>
<td>COURSE CODE</td>
<td>NOTE</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>17</td>
<td>SVPC- 6 @ Students Voluntary Police Corp</td>
<td>EUW 666</td>
<td>* OFFERED IN PACKAGES</td>
</tr>
<tr>
<td>17</td>
<td>Seni Silat Cekak I</td>
<td>EUW171</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Seni Silat Cekak II</td>
<td>EUW271</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Seni Silat Cekak III</td>
<td>EUW371</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Taekwon-Do GTF I</td>
<td>EUW172</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Taekwon-Do GTF II</td>
<td>EUW272</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Taekwon-Do GTF III</td>
<td>EUW372</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Karate-Do</td>
<td>EUW173</td>
<td>* OFFERED IN SINGLE COURSE</td>
</tr>
<tr>
<td>20</td>
<td>Fencing</td>
<td>EUW174</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Swimming I</td>
<td>EUW180</td>
<td>OFFERED IN SCHEDULED PACKAGES</td>
</tr>
<tr>
<td>21</td>
<td>Swimming II</td>
<td>EUW280</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Swimming III</td>
<td>EUW380</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Lawn Bowl</td>
<td>EUW181</td>
<td>* OFFERED IN SINGLE COURSE</td>
</tr>
<tr>
<td>23</td>
<td>Petanque</td>
<td>EUW182</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Canoe</td>
<td>EUW183</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Badminton</td>
<td>EUW184</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Hockey</td>
<td>EUW185</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Sepak Takraw</td>
<td>EUW186</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Rugby</td>
<td>EUW 187</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Archery</td>
<td>EUW 188</td>
<td>* OFFERED IN SINGLE COURSE</td>
</tr>
<tr>
<td>30</td>
<td>Ping Pong</td>
<td>EUW 189</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Drama, Playwright & Acting</td>
<td>EUW 190</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Community Services</td>
<td>EUW 191</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Initiative & Innovation</td>
<td>EUW192</td>
<td></td>
</tr>
</tbody>
</table>
COURSE SYLLABUS

EUW101 GOLF

Course Synopsis

The Golf Co-Curriculum course aims to expose the students to the science of the game of golf in both theoretical and technical skills. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of golf, while the technical portion focuses on the practical training i.e. skills in playing golf.

References

EUW102 BASEBALL

Course Synopsis

The Baseball Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the baseball game. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of baseball, while the technical portion focuses on the practical training i.e. skills in playing baseball.

References

EUW103 WOODBALL

Course Synopsis

The Woodball Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the woodball game. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of woodball, while the technical portion focuses on the practical training i.e. skills in playing woodball.

References

EUW104 FOOTBALL

Course Synopsis

The Soccer/Football Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the soccer/football game. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of soccer/football, while the technical portion focuses on the practical training i.e. skills in playing soccer.

References

EUW105 NETBALL

Course Synopsis

The Netball Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the netball game. The theoretical aspect of the course covers the
EUW106

TENNIS

Course Synopsis

The Tennis Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the tennis game. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of tennis, while the technical portion focuses on the practical training i.e. skills in playing tennis.

References

EUW107

EQUESTRIAN

Course Synopsis

This course aims to train the students in mastering the basic skills of horses handling and management. In addition, it exposes students to the knowledge on horses grooming, installation of equipment and riding techniques. Equestrian sports provide the opportunities for students to interact, foster the spirit of sportsmanship, cooperation, responsibility, and are able to develop positive personality among students.

References

EUW108

WEIGHTLIFTING

Course Synopsis

This course emphasizes on the identification, regulatory and basic refereeing system of weightlifting sports. Systematic planning in the weightlifting sport is able to develop students’ performance to the optimum fitness level. Mastery of basic skills in bio-mechanics allows students to practice weightlifting skills safely. Economical energy coupled with high degree of self confidence in this sport lead to excellence in the weightlifting sport.

References

1. Buku kejurulatihan angkat berat pilot tahap 1 (P.A.B.M) & MSN
EUW 151
BASIC GAMELAN

Course Synopsis
The Basic Gamelan Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the traditional art of gamelan. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of traditional art of gamelan, while the technical portion focuses on the practical training i.e. the skills in playing gamelan.

References

EUW 251
GAMELAN II

Course Synopsis
The Gamelan II Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the traditional art of gamelan. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of traditional art of gamelan, while the technical portion focuses on the practical training i.e. skills in playing the gamelan.

EUW 351
GAMELAN III

Course Synopsis
The Gamelan III Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the traditional art of gamelan. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of traditional art of gamelan, while the technical portion focuses on the practical training i.e. skills in playing the gamelan.

References

EUW 152
JAZZ GROUP

Course Synopsis
The Jazz Group Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the jazz music. The theoretical aspect of the course covers the history, background, terminology, self-management and other related aspects of jazz music, while the technical portion focuses on the practical training i.e. skills in playing the jazz music.

References

EUW 252 JAZZ GROUP II

Course Synopsis

The Jazz Group II Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the jazz music. The theoretical aspect of the course covers the history, background, terminology, self-management and other related features of jazz music, while the technical portion focuses on the practical training i.e. skills in playing the jazz music.

References

EUW 352 JAZZ GROUP III

Course Synopsis

The Jazz Group III Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of the jazz music. The theoretical aspect of the course covers the history, background, terminology, self-management and other related features of jazz music, while the technical portion focuses on practical training of playing the brass musical instruments in group.

References

EUW 253 BRASS BAND II

Course Synopsis

Brass Band II Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of brass musical instruments. The theoretical aspect of the course covers the history, background, terminology, self-management and other related features of brass band, while the technical portion focuses on practical training of playing the brass musical instruments in group.

EUW 153 BRASS BAND I

Course Synopsis

The Brass Band Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of brass musical instruments. The theoretical aspect of the course covers the history, background, terminology, self-management and other related features of brass band, while the technical portion focuses on practical training of playing the brass musical instruments in group.
EUW 353
BRASS BAND III
Course Synopsis
Brass Band III Co-Curriculum course aims to expose the students to both the theoretical and technical aspects of brass musical instruments. The theoretical aspect of the course covers the history, background, terminology, self-management and other related features of brass band, while the technical portion focuses on practical training of playing the brass musical instruments in group.

References

EUW 154
ANGKLUNG
Course Synopsis
Angklung Co-Curriculum course seeks to expose the students to both the theoretical and traditional aspects of the traditional art of angklung music. The theoretical aspect of the course covers on the history, background, terminology, self-management and other related to angklung, while the technical portion focuses on practical training (practical) of skills in playing the angklung musical instruments.

References

EUW 254
ANGKLUNG II
Course Synopsis
Angklung II Co-Curriculum course seeks to expose the students to both the theoretical and traditional aspects of the traditional art of angklung music. The theoretical aspect of the course covers on the history, background, terminology, self-management and other related to angklung, while the technical portion focuses on practical training (practical) of skills in playing the angklung musical instruments.

References
EUW 354
ANGKLUNG III

Course Synopsis

Angklung III Co-Curriculum course seeks to expose the students to both the theoretical and traditional aspects of the traditional art of angklung music. The theoretical aspect of the course covers on the history, background, terminology, self-management and other related arts creative movement, while technically, this course is more focused practical training (practical) of skills in the art of creative movement.

References

EUW 155
CREATIVE MOVEMENT

Course Synopsis

Creative movement Co-Curriculum course aims to expose the students to the knowledge of arts creative movement in terms of theoretical skills and technical. In terms of theory, this course is more focused on the

References

EUW261
ROTU ARMY II

Course Synopsis

Candidates must fulfil the conditions that have been set by ATM Selection Board. Training will start after the candidates have succeeded in the selection test by PALAPES Base and Reserve Team Section. Level I and II aim are to expose students to the Basic Military Training (Theory and Practical) and life in camp.

References

1. Modul Latihan dari Kolej Tentera Darat ATM
2. Buku Panduan Senjata-senjata Kompeni, Kementerian Pertahanan Malaysia, 2004
EUW461

ROTU ARMY IV

Course Synopsis
This training is the addition from Level I, II and III. Emphasis made towards the administration leadership principle, planning and grouped training.

References
i) Modul Latihan dari Kolej Tentera Darat ATM
ii) Buku Panduan Senjata-senjata Kompeni, Kementerian Pertahanan Malaysia, 2004
iii) Buku Panduan Askar Wataniah, Kementerian Pertahanan Malaysia, 1995

EUW561

ROTU ARMY V

Course Synopsis
This course is the continuity from Level III and IV. In this level, student is trained to become a head, lead the team in all related to training, administration and social. Student will be evaluated and given the support to be accredited in the Commissioning Ceremony and Certificate Awarding by DYMM SPB Yang Dipertuan Agong.

EUW661

ROTU ARMY VI

Course Synopsis
This course is the continuity from Level III, IV and V. In this level, student is trained to become a head, lead the team in all related to training, administration and social. Student will be evaluated and given the support to be accredited in the Commissioning Ceremony and Certificate Awarding by DYMM SPB Yang Dipertuan Agong.

References
1. Modul Latihan dari Kolej Tentera Darat ATM
2. Buku Panduan Senjata-senjata Kompeni, Kementerian Pertahanan Malaysia, 2004

EUW263

THE MALAYSIAN RED CRESCENT SOCIETIES CERTIFICATION COURSE II

Course Synopsis
Certification of Red Crescent II Co-Curriculum course aims to expose students in terms of sport science in Certification by the Red Crescent theoretical and technical skills. In terms of theory, this course is focused on historical background, terminology, self-management and other related Certification by the Red Crescent.

References
1. Akta Persatuan Palang Merah Malaysia (PERBADANAN), 1965.
5. Perlumbaan dan Undang-undang Persatuan Palang Merah Malaysia.

EUW163

THE MALAYSIAN RED CRESCENT SOCIETIES CERTIFICATION COURSE I

Course Synopsis
Certified Red Crescent Co-Curriculum course aims to expose the students to both the theoretical and traditional aspects of Certified Red Crescent. The theoretical aspect of the course covers on historical background, terminology, self-management and other related features of Certification by the Red Crescent, while the technical aspects focuses on practical training in terms of skills for the Certification of the Red Crescent.
EUW363
THE MALAYSIAN RED CRESCENT SOCIETIES CERTIFICATION COURSE III

Course Synopsis
Certification of Red Crescent III Co-Curriculum course aims to expose students in terms of sport science in Certification by the Red Crescent theoretical and technical skills. In terms of theory, this course is focused on historical background, terminology, self-management and other related Certification by the Red Crescent. While technically, this course is focus on practical training (practical) in terms of skills Certification of the Red Crescent.

References
1. Akta Persatuan Palang Merah Malaysia (PERBADANAN), 1965.
5. Perlombagaan dan Undang-undang Persatuan Palang Merah Malaysia.

References
1. Akta Polis 1967 (Akta 344)
2. Kanun Keseksaan (Akta 574) atau Penal Code (Act 574)
3. Modul Latihan dari PDRM
4. Akta Dadah Merbahaya 1952 (Akta 234)
5. Modul Undang-undang PDRM
6. Akta Penagih Dadah (Rawatan dan Pemulihan) (Akta 283)
7. Buku Panduan Senjata Akta Pencegahan Jenayah 1959
8. Manual Pertolongan Cemas PBSMM
9. Manual Senjata Kecil PDRM

EUW166
SVPC-1 @STUDENTS VOLUNTARY POLICE CORP

Course Synopsis
The Co-Curriculum course is to form personality and student development that is knowledgeable, disciplined and patriotic, and also possesses good level of police knowledge. The training programme and SVPC Corp activities are by following the training programme and activity that was provided and approved by PDRM. A total of 672 hours needed to comply with the training needs and SVPC Corp activity for commission purposes. Thus, a total of 112 hours of training are needed to fulfil the training requirement in the aspect of Administration/Management, outdoor activity and academic. The reason the SVPC Corp was established are:

a. To produce a SVPC Corp Police officer that is knowledgeable in relation to law, has the attitude and suitable (police) discipline

b. To create civic consciousness and good police relationship with society.

c. Nurture physical resilience, mental and strong personality to face challenge.

EUW 266
SVPC-2 @STUDENTS VOLUNTARY POLICE CORP

Course Synopsis
This is the addition from the programme that has been implemented in semester two that intends to shape student personality and development that is knowledgeable, discipline and patriotic, and also possess good police knowledge level. The training programme and SVPC Corp activity is followed by the training programme and activity that has been provided and approved by PDRM. Thus, a total of 112 hours of training are needed to fulfil the
EUW 366
SVPC-3 @STUDENTS
VOLUNTARY POLICE CORP

Course Synopsis
This is the addition from the programme that has been implemented in semester two that intends to shape student personality and development that is knowledgeable, discipline and patriotic, and also possess good police knowledge level. The training programme and SVPC Corp activity is followed by the training programme and activity that has been provided and approved by PDRM. Thus, a total of 112 hours of training are needed to fulfil the training requirement in the aspect of Administration/Management, outdoor activity and academic.

References
1. Akta Polis 1967 (Akta 344)
2. Kanun Keseksaan (Akta 574) atau Penal Code (Act 574)
3. Modul Latihan dari PDRM
4. Akta Dadah Merbahaya 1952 (Akta 234)
5. Modul Undang-undang PDRM
6. Akta Penagih Dadah (Rawatan dan Pemulihan) (Akta 283)
7. Buku Panduan Senjata
 Akta Pencegahan Jenayah 1959
8. Manual Pertolongan Cemas PBSMM
9. Manual Senjata Kecil PDRM

EUW 466
SVPC-4 @STUDENTS
VOLUNTARY POLICE CORP

Course Synopsis
This is the addition from the programme that has been implemented in semester two that intends to shape student personality and development that is knowledgeable, discipline and patriotic, and also possess good police knowledge level. The training programme and SVPC Corp activity is followed by the training programme and activity that has been provided and approved by PDRM. Thus, a total of 112 hours of training are needed to fulfil the training requirement in the aspect of Administration/Management, outdoor activity and academic.

References
1. Akta Polis 1967 (Akta 344)
2. Kanun Keseksaan (Akta 574) atau Penal Code (Act 574)
3. Modul Latihan dari PDRM
4. Akta Dadah Merbahaya 1952 (Akta 234)
5. Modul Undang-undang PDRM
6. Akta Penagih Dadah (Rawatan dan Pemulihan) (Akta 283)
7. Buku Panduan Senjata
 Akta Pencegahan Jenayah 1959
8. Manual Pertolongan Cemas PBSMM
9. Manual Senjata Kecil PDRM

EUW 566
SVPC-5 @STUDENTS
VOLUNTARY POLICE CORP

Course Synopsis
This is the addition from the programme that has been implemented in semester two that intends to shape student personality and development that is knowledgeable, discipline and patriotic, and also possess good police knowledge level. The training programme and SVPC Corp activity is followed by the training programme and activity that has been provided and approved by PDRM. Thus, a total of 112 hours of training are needed to fulfil the training requirement in the aspect of Administration/Management, outdoor activity and academic.

References
1. Akta Polis 1967 (Akta 344)
2. Kanun Keseksaan (Akta 574) atau Penal Code (Act 574)
3. Modul Latihan dari PDRM
4. Akta Dadah Merbahaya 1952 (Akta 234)
5. Modul Undang-undang PDRM
6. Akta Penagih Dadah (Rawatan dan Pemulihan) (Akta 283)
7. Buku Panduan Senjata
 Akta Pencegahan Jenayah 1959
8. Manual Pertolongan Cemas PBSMM
9. Manual Senjata Kecil PDRM
EUW666
SVPC-6 @ STUDENTS
VOLUNTARY POLICE CORP

Course Synopsis
This is the addition from the programme that has been implemented in semester two that intends to shape student personality and development that is knowledgeable, discipline and patriotic, and also possess good police knowledge level. The training programme and SVPC Corp activity is followed by the training programme and activity that has been provided and approved by PDRM. Thus, a total of 112 hours of training are needed to fulfil the training requirement in the aspect of Administration/Management, outdoor activity and academic.

References
1. Akta Polis 1967 (Akta 344)
2. Kanun Keseksaan (Akta 574) atau Penal Code (Act 574)
3. Modul Latihan dari PDRM
4. Akta Dadah Merbahaya 1952 (Akta 234)
5. Modul Undang-undang PDRM
6. Akta Penagih Dadah (Rawatan dan Pemulihan) (Akta 283)
7. Buku Panduan Senjata
 Akta Pencegahan Jenayah 1959
8. Manual Pertolongan Cemas PBSMM
9. Manual Senjata Kecil PDRM

EUW371
SENIR SILAT CEKAK III

Course Synopsis
Martial Arts Fight Co-Curriculum course aims to expose students to the knowledge of martial arts self defence fight in terms of theoretical skills and technical. In terms of theory, this course is more focused on the history, background, terminology, self-management and other related to Martial arts. While technically, this course focused on practical training (practical) skills in terms of hands and feet that are being practice from time to time.

References
2. Pengenalan kepada Persatuan Seni Silat Cekak Malaysia, Persatuan Seni Silat Cekak Perlis, Perlis.

EUW271
SENIR SILAT CEKAK II

Course Synopsis
Martial Arts Fight Co-Curriculum course aims to expose students to the knowledge of martial arts self defence fight in terms of theoretical skills and technical. In terms of theory, this course is more focused on the history, background, terminology, self-management and other related to Martial arts. While technically, this course focused on practical training (practical) skills in terms of hands and feet that are being practice from time to time.

References
2. Pengenalan kepada Persatuan Seni Silat Cekak Malaysia, Persatuan Seni Silat Cekak Perlis, Perlis.

EUW171
SENIR SILAT CEKAK

Course Synopsis
Martial Arts Fight Co-Curriculum course aims to expose students to the knowledge of martial arts self defence fight in terms of theoretical skills and technical. In terms of theory, this course is more focused on the history, background, terminology, self-management and other related to Martial arts. While technically, this course focused on practical training (practical) skills in terms of hands and feet that are being practice from time to time.

References
2. Pengenalan kepada Persatuan Seni Silat Cekak Malaysia, Persatuan Seni Silat Cekak Perlis, Perlis.
EUW172
TAEKWON – DO GTF I

Course Synopsis
Taekwon-Do I (GTF) Co-Curriculum course aims to expose the students to the knowledge of martial arts that is Taekwon-Do (GTF) in terms of theoretical and technical skills. In terms of theory, this course is focused on historical background, terminology, self-management and other related with Taekwon-Do. While technical, this course is more focused on practical training (practical) skills in terms of hands and feet that are being practice from time to time.

References

EUW173
KARATE-DO

Course Synopsis
The karate-do co-curriculum course exposes the students to the knowledge of martial arts karate-do in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other associated with the art of karate-do. While technically, this course is focused on practical training (practical) skills in the art of karate-do.

References

EUW372
TAEKWON – DO GTF III

Course Synopsis
Course Co-Curriculum Taekwon-Do III (GTF) is an extension of Taekwon-Do II (GTF). This course is the last course in a series of courses Taekwon-Do (GTF). Theoretical and technical knowledge learned in previous courses will be practiced through discussion, presentation, practice, practices by students and by increasing the test belts. In addition, the students will be exposed to theory and practice of the method of Taekwon-Do class management and coaching.

References
EUW174
FENCING

Course Synopsis
The fencing co-curriculum course aims to expose the students to the science of fencing sports theory and technical skills. In terms of theory, this course is more focused on the history, background, terminology, the skills of defence of oneself and other related aspects of fencing sports. While technically, this course is more focused on skills in practical training (practical).

References

EUW180
SWIMMING I

Course Synopsis
The swimming co-curriculum course aims to expose the students to the science of swim in the theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology and other related aspects of swimming activities. While technical, this course is more focused on the practical training in terms of swimming skills.

References

EUW280
SWIMMING II

Course Synopsis
The swimming II co-curriculum course aims to enhance the students’ knowledge and skills on the techniques of swimming. In terms of theory, this course is more focused on the history, background, terminology and other related aspects of swimming activities. While technical, this course is more focused on the practical training (practical) in terms of swimming skills.

References

EUW380
SWIMMING III

Course Synopsis
The swimming III co-curriculum course aims to enhance and sustain the students’ knowledge and skills on the techniques of swimming. In terms of theory, this course is more focused on the history, background, terminology and other related aspects of swimming activities. While technical, this course is more focused on the practical training (practical) in terms of swimming skills.

References

EUW182 PETANQUE

Course Synopsis

The petanque co-curriculum courses aim to expose the students to the knowledge of petanque sports in theory and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other aspects associated with petanque sports. While technically, this course is more focused on practical training (practical) skills in petanque.

References

EUW184 BADMINTON

Course Synopsis

The badminton co-curriculum course aims to expose the students to the knowledge of badminton in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other related aspects associated with badminton. While technically, this course is more focused on the practical training (practical) skills in playing badminton.

References

References

EUW185 HOCKEY

Course Synopsis

The hockey co-curriculum course aims to expose the students to the sport science of hockey in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other related aspects associated with hockey. While technically, this course is more focused on the practical training (practical) in terms of skills in playing hockey.

References

EUW186 SEPAK TAKRAW

Course Synopsis

The sepak takraw co-curriculum course aims to expose the students to the science of sepak takraw sports, theoretically and technically. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other related aspects associated with sepak takraw. While technically, this course is more focused on the practical training (practical) in terms of skills in playing sepak takraw.

References

EUW188 ARCHERY

Course Synopsis

The archery co-curriculum course aims to expose the students to archery, shooting sports science in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other related aspects concerning shooting. While technically, this course is more focused on the practical training (practical) skills in archery.
References

EUW189

PING PONG

Course Synopsis

The table tennis co-curriculum course aims to expose the students to the knowledge of ping pong sports in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, management of oneself and other related aspects associated with ping-pong. While technically, this course is more focused on the practical training (practical) skills in playing ping-pong.

References

EUW190

DRAMA, PLAYWRIGHT AND ACTING

Course Synopsis

The drama, playwright and acting co-curriculum course aims to expose the students to the knowledge of drama, theatre in terms of theoretical and technical skills. In terms of theory, this course is more focused on the history, background, terminology, self-management and other related aspects of drama, theatre and arts. The technical terms, this course is more focused on the practical training (practical) skills in drama, theatre and playwright.

References

EUW191

COMMUNITY SERVICE

Course Synopsis

The community service co-curriculum course fosters community spirit of volunteerism among the students. In addition, the course will also help the process of forming communication network and self-stimulate the intellectual of the community.

References

EUW192

INITIATIVE & INNOVATION

Course Synopsis

This course intends to train the students to master the basic skill of design and engineering. Additionally, it gives an exposure to students to know ways of using recycling
materials, mechanisms that can be used and techniques of designing. This course gives the opportunity to students to spill out ideas that are constructive and apply it in a form of a product, high level of cooperativeness, be responsible and ability to develop student personality that is excellent.

References

2. Acoustic.